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Figure S10. Resonance Raman spectra and fits for the low frequency data for the isotopomers of 
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indicated.  The frequencies for Cld-13CO complexes are in parentheses.  
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Figure S1: UV visible pH titration for the R183Q mutant (A) pH 6.8, 6.5, 6.1, 5.8, 5.5, 5, 3.8 (B) pH 

6.8, 7.3, 7.7, 8.2, 8.7, 9.4, 10, 10.5, 10.9 and (C) pH 8.4, 9.3, 9.9, 10.3, 10.6, 10.9, 11.6, 12.1 
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Figure S2: UV/visible pH titrations for mutant R183A at (A) pH 6.8, 6.5, 6.1, 5.8, 5.5, 5, 3.8 (B) pH 

6.8, 7.2, 7.5, 7.9, 8.3, 8.9, 9.5, 9.9, 10.2, 10.4, 10.6 and (C) pH 8.4, 9.3, 9.9, 10.3, 10.6, 10.9, 11.6, 12.1 
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Figure S3: UV/visible pH titrations for mutant R183K at pH 6.2, 5.8, 5.4, 4.9, 4.2, 3.8, 3.3, 2.8 (B) at 

pH 6.9, 7.1, 7.3, 7.5, 7.8, 7.9, 8.9, 9.4, 10. 10.5, 10.9 and (C) at pH 10.04, 10.4, 10.9, 11.2, 11.6, 11.9, 

12.5, 12.9 
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Figure S4.  Soret-excited, high frequency window rR spectra of Cld mutants as a function of pH.  

Samples were prepared in 100 mM sodium phosphate, pH 6.8, 100 mM Tris/HCl pH 7.8, 100 mM 

Tris/HCl pH 8.8, 100 mM Ches pH 10.0 and 100 mM MES pH 5.5.  Spectra were collected with 406.7 

nm excitation and 14 mW at the sample. A) Cld(R183K) spectra compared to the spectrum of WT Cld 

at pH 10,  B) Cld(R183A) spectra, and C) Cld(R183Q) spectra compared to WT Cld at pH 6.8.  

* indicates plasma emission lines. 
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Figure S5. High frequency rR spectra of ferrous Cld(R183Q) at pH 7.8 and 10.0.  Spectra were 

acquired with 406.7 nm excitation and 15 mW at the sample.  Inset:The low-frequency window of the 

rR spectrum of ferrous Cld(R183Q) at pH 7.8 and 10.0 obtained with 441.6 nm excitation. 

 

 

 

 

 

 

 

 

 

 

Figure S6.  Resonance Raman characterization of ferrous Cld(R183A) in 100 mM sodium phosphate, 

pH 6.8. (A) The high frequency window rR spectrum acquired with 413.1 nm excitation and 18 mW at 
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the sample.  (B) The low-frequency window of the rR spectrum of ferrous Cld(R183A) obtained with 

441.6 and 413.1 nm excitation. 

 

 

 

 

 

 

 

 

Figure S7.  UV-visible spectra of ferrous Cld(R183K) as a function of pH.  Samples were prepared in 

100 mM sodium phosphate, pH 6.8 or 100 mM Ches pH 10.0 and reduced with sodium dithionite.  
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Figure S8. Fit of WT DaCld−CO rR data (pH 5.8) determine the Fe−C stretching frequency of the 

two conformers.  Spectra were acquired with 413.1 nm excitation.  Original spectrum is in black, fit 

peaks are in blue, and the simulated spectrum is in red.  The simulated difference spectrum was 

generated by subtraction of the simulated spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9.  Soret-excited rR spectra of WT Cld−CO as a function of pH. 
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Figure S10.  Resonance Raman spectra  and fits for the low frequency data for the isotopomers of 

Cld(R183Q)-CO at (A) pH 6.8 and (B) pH 10.0.  The original data is in black; blue indicates the 

component peaks and red shows the calculated fit. 
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Table S1: Comparison of Fe-CO vibrational frequencies for several heme proteins that were used to 

construct Figure 7 in the paper. The frequencies are reported for pH 6.8 unless otherwise indicated. The 

frequencies for Cld-13CO complexes are in parentheses. 

 

Fe(II)-CO  νFe−C νC−O 
 WTOCMut OC

 WTCFeMut CFe

νΔν

νΔν








 Ref 

WT DaCld closed 518(513) 1929(1984)  

This 
work 

 

 open 494(491) 1954(1908) −24/+25a 

DaCld(R183K) open 491(488) 1956(1914) 
−3/+2b  

−27/+27c 

DaCld(R183Q) closed 511(506) 1935(1891) −7/+6 

 open 490(487) 1958(1915) 
−3/+4b

−28/+29c 

DaCld(R183A) open 488(486) 1964(1918) 
−6/+10b 

−30/+35c 

     

(1,2) 

HRPC acidic pH  492 1967  

HRPC pH 6 form I 539 1906  

 form II 516 1934  

HRPC alkaline 
pH 

 530 1934  

HRPC(R38L) pH 
6.0 

 515 1941.5 
-24/+35.5 

-1/+7.5 

HRPC(R38L) 
alkaline pH 

 496 1944 -34/+10 

HRPC(H42L)  
pH 6-9.5 

 525 1924 
-14/+18 (form I) 

+9/-10 (form II) 

CcP pH 7.0  530 1922  (3) 
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CcP alkaline pH  503 1948  

CcP(R48L) 
acidic pH 

 500 1941 -30/+19 

(4) 
CcP(R48L) 
alkaline pH 

 500 1951 -3/+3 

CcP(H52L) pH 6  508 1944 -22/+22 (5) 

SW Mb pH 8.4  512 1944   

(6) 

 

SW Mb pH 7.0  507 1947  

SW Mb pH 2.6  489 1966  

SW Mb(H64A)  490 1966 −17/+19 (7,8) 

SW Mb(H64L)  489 1966 −18/+19 (7-9) 

Mtb KatG pH 
7.2 

 525 1923  (10) 

Mtb KatG pH 
8.0 

 
522 

500 

1926 

1956 
 (11) 

Tea peroxidase  544 1892  (12) 

Coprinus 
cinereus  

peroxidase 

 519 1930.5  (12) 

 

a Δ(νFe−C WTopen - νFe−C WTclosed)/ Δ(νC−O WTopen - νC−O WTclosed).   

bΔ(νFe−C mut - νFe−C WTopen)/Δ(νC−O mut - νC−O WTopen).   

cΔ(νFe−C mut - νFe−C WTclosed)/ Δ(νC−O mut - νC−O WTclosed).  
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