Characterization of the human rod transducin alphasubunit gene

Shao-Ling Fong

Departments of Ophthalmology, Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, USA

Received January 14, 1992; Revised and Accepted April 20, 1992

EMBL accession no. X63749

ABSTRACT

The human rod transducin α subunit (T_{r α}) gene has been cloned. A cDNA clone, HG14, contained a 1.1 kb insertion when compared with the human $T_{r\alpha}$ cDNA published by Van Dop et al. (1). Based on two overlapping clones isolated from a human genomic library, the human $T_{r\alpha}$ gene is 4.9 kb in length and consists of nine exons interrupted by eight introns. Northern blots of human retina total RNA showed that the gene is transcribed by rod photoreceptors into two species of mRNA, 1.3 kb and 2.4 kb in size. Apparently, this is the result of alternative splicing. Two putative transcription initiation sites were determined by primer extension and S1 nuclease protection assays. The putative promoter regions of the human and mouse $T_{r\alpha}$ genes have an identity of 78.1%. As found in the mouse gene (2), no TATA consensus sequence is present in the human gene.

INTRODUCTION

Transducins belong to a family of guanine nucleotide-binding proteins (G proteins) that play major roles in signal transduction (3, 4). The G proteins involved in the transmembrane signaling processes have three subunits (α , β and γ) and share common features in their mechanisms of action (3, 4, 5, 6, 7). Many G proteins have been identified and characterized in mammals including human, the major differences reside mainly in the α subunit. The amino acid sequences engaged in guanine nucleotide binding and GTP hydrolyzing activities, are found to be highly conserved (4, 7, 8). The β and γ subunits are either very similar or identical. It is interesting to note that the intron-exon organization of the mouse $T_{r\alpha}$ gene (2) is identical with the α -subunit genes of human G_o , G_i2 , and G_i3 (2, 4).

It is not clear how many different G proteins are required to carry out the various signaling systems in mammalian cells. Rod and cone photoreceptors of bovine and human retinas each express a different transducin α -subunit (9, 10, 11, 12, 13), and share a common mechanism of visual transduction (14, 15, 16, 17).

In this report, the human $T_{r\alpha}$ gene and its 5' flanking region have been isolated, and sequenced. The two sizes of transcripts for the human $T_{r\alpha}$ gene detected by Northern blot (13) appear to be derived by alternative splicing. The transcriptional initiation sites have also been determined. Significant identity between the human and mouse transducin α -subunit genes in the 5' flanking region has been demonstrated. These results provide the basis for future studies on the regulatory elements that are involved in the expression of transducin α -subunit genes in normal and diseased human eyes.

MATERIALS AND METHODS

Isolation of cDNA And Genomic Clones for Human $T_{r\alpha}$

A 29-base oligomer complementary to residues 188-216 of the bovine $T_{r\alpha}$ cDNA sequence (9) was used to screen a human retina λ gt10 cDNA library (kindly provided by Dr. J.Nathans). About 130 phage plaques out of 50,000 showed positive hybridization during the primary screening. Two different but overlapping clones (HG3 and HG14) were purified and characterized by sequencing. Both clones encoded human $T_{r\alpha}$. The cDNA HG3 was then used as a probe to screen a human leucocyte genomic library in EMBL3 (Clontech, Palo Alto, C-A). Thirteen phage plaques out of one million were positive. Two of these clones, HGLG4 and HGLG11, were characterized and are reported in this paper.

Subcloning and Sequencing

The cDNA clones were digested with *Eco* RI and subcloned into M13mp19. The genomic clones HGLG4 and HGLG11 were excised from the EMBL3 vector with *Sal* I. Restriction fragments generated by *Bam* HI, *Stu* I and *Bgl* I digestion were then subcloned into pUC and M13 vectors (18). Sequencing was performed by the dideoxy chain termination method (19) using Sequenase (United States Biochemical Corp., Cleveland, OH) and the procedure of Dale (20). Some gaps were sequenced by using synthetic oligonucleotide primers.

RNA preparation

Human retina total RNA was prepared according to Chirgwin *et al.* (21). Poly (A^+) RNA was prepared from 100 mg of retinal tissue from individual donors by using the Micro-Fast Track mRNA isolation kit (Invitrogen Co., San Diego, CA).

Northern Blot Analysis

Approximately one half of the poly (A^+) RNA prepared from 100 mg of retinal tissue was loaded on a 1.2% agarose gel in

MOPS (3-[N-morpholino]-propanesulfonic acid) buffer containing formaldehyde and transferred to Nitroplus 2000 membrane (Micron Separations Inc., Westboro, MA). The blot transfer was hybridized at 42° C in the presence of 50% formamide with HG3 cDNA labeled with ³²P by random priming (Boehringer Mannheim, Indianapolis, IN).

Primer Extension Analysis

A synthetic 17-base oligonucleotide complementary to residues 119 to 135 of the cDNA sequence published by Van Dop *et al.* (1) was used as a primer. After end-labeling with T4 polynucleotide kinase (Bethesda Research Lab., Gaithersburg, MD), this oligonucleotide was annealed for 1 hour at 55°C to 30 μ g of human retina total RNA. The extension reaction was

Fig. 1. Sequencing strategy for the human $T_{r\alpha}$ gene. The two overlapping clones (HGLG4 and HGLG11) span the full length of human $T_{r\alpha}$ gene. The exons are labeled 1 through 9 and are shown as bars. The introns are shown as lines. Dashed lines are uncharacterized regions. Blocked exon segments correspond to coding regions, open exon segments correspond to nontranslated regions. The region corresponding to the dotted bar is not present in the 1.3 kb mRNA. Both mRNA species use the same polyadenylation signal, AATAAA. B, Bam HI; U, Stu I; G, Bgl I. Arrows indicate direction (5' to 3') and extent of sequencing. Solid circles at the beginning of some arrows show regions where synthetic primers were used. The open circle at the beginning of one arrow indicates that the sequence was obtained from a Sma I fragment of the genomic clone HGLG11.

carried out at 42 °C for another hour using reverse transcriptase in the presence of actinomycin D (20 ng/ μ l) (22). The extended product was analyzed on an 8% denaturing polyacrylamide gel.

S1 Nuclease Protection Analyses

The method was based on that of Ausubel *et al.* (23). The ³²P-labeled synthetic oligonucleotide used for primer extension was hybridized to a single stranded M13 clone carrying a 2.1 kb *Stu* I fragment from the genomic clone HGLG4. The hybrid was extended with Klenow fragment and then digested with *Hpa* II. The single-stranded radiolabeled probe, defined at its 3'-end by *Hpa* II digestion, was isolated on an alkaline agarose gel and hybridized (5×10^4 cpm) with 30 μ g of human retina total RNA. One thousand units of S1 nuclease were then added and the cleavage reaction was carried out at 15°C for one and half hours. The size of the protected probe was determined on an 8% denaturing polyacrylamide gel.

Computer Analyses and Sequence Comparisons

Sequences were analyzed with Beckman MicroGenie software on an IBM PCXT computer.

RESULTS

Isolation and Characterization of the Human $T_{r\alpha}$ Gene

The cDNA clone HG3 contained 976 nucleotides that were identical with residues 181-1156 of the $T_{r\alpha}$ cDNA sequence published by Van Dop *et al.* (1). The cDNA clone HG14 consisted of 2389 nucleotides that included a 16-base poly (A⁺) tail. It differs from Van Dop *et al.*'s (1) sequence in that the clone HG14 contained a 1134-base insertion between residues 1157 and 1158 of the published cDNA (1).

Among the thirteen positive genomic clones obtained by screening a human genomic library with ³²P-labeled HG3, two overlapping clones, HGLG4 and HGLG11, encoded the entire $T_{r\alpha}$ gene. The strategy used to sequence those two clones is summarized in Fig. 1. The complete $T_{r\alpha}$ gene sequence is shown in Fig. 2, and the 5' flanking sequence is shown in Fig. 3.

Table 1. Exons and introns of the Human Tra gene^a. This table should be read from the left to the right, continuing to the next line. The first column shows the number of the exon, followed by its size, its last six nucleotides, the first six nucleotides of the subsequent intron, the number of this intron, its size, the complete 3' sequence of the intron between the putative branch point consensus and the first six nucleotides of the next exon. Putative branch sites, conforming to the consensus YNYYRAY (Y, pyrimidine; R, purine; N, any nucleotide) (31), were identified within a region of 18-40 bp upstream of the 3' intron-exon boundaries. Possible branch sites are underlined.

	E	con				Intron			Exo	n
Size No.(bp)		5 '-s p don	No.	Size (bp)	Branch site	Polypyrimidine tract	3'-: acc	No.		
1	222	TTCTGG	gtaggg	1	1301	ctctgag	acaccacatctct	ttcag	GTGCCG	2
2	43	сатсаа	gtgagt	2	89	coctoat	tctgctctcctcggc	ctcag	GATTAT	3
3	142	CGCCAG	gtgtgc	3	99	CCCCCaccago	cactctcaccctgcc	cccag	GACGAC	- 4
4	158	GGGCTA	gtgage	4	85	cacccacctac	ggccgggtctcg	ICGCag	CTACCT	5
5	129	CTTCCG	gtacga	5	210	gacacaggtto	aggcccccgcggccc	cgcag	GATGTT	6
6	130	GAAGTG	gtgcgt	6	279	acccaac	agetgetgecete	ctcag	AACCGC	7
7	154	ACGATG	gtgaga	7	110	ggctgagcaga	gtgagageteccgecce	cgcag	GACCCA	8
8	192	TCTGAG	gtaggt	8	310	cagggatgctg	actgggtttcctttt	cacag	GTGCCT	
9	1249	Poly (A) site					-		
8	192	TCTGAG	gtaggt	8a	1444	tcctcatccag	caccaaatctttgcttatgt	cacag	GCCAGG	9
9a	115	Poly (A) site					-		

^aTwo kinds of mRNA coding for Tra were identified. The differences reside at the 8th intron and 9th exon. The 8th intron and 9th exon for the formation of 1.3 kb mRNA are indicated by 8a and 9a respectively.

Fig. 2. Complete nucleotide sequence of the human $T_{r\alpha}$ gene. The two putative transcription initiation sites, A and G (at positions 1 and 5); the presumptive translation initiation site, ATG (at positions 117-119); the translation termination codon, TGA (at positions 3340-3342); and the polyadenylation consensus sequence, AATAAA (at positions 4883-4888) are overlined. Exons are denoted by upper-case letters. Introns are denoted by lower-case letters with their consensus gt and ag underlined. The bracketed region is not present in the 1.3kb mRNA. The poly A tail (a stretch of 16 A's followed by a C) for the 2.4 kb mRNA is attached to the nucleotide G at position 4901. The poly A tail for the 1.3 kb mRNA is attached to nucleotide C at position 4902 (1).

Fig. 3. Comparison of the 5' upstream region of the human (H) and mouse (M) (2) $T_{r\alpha}$ genes. The human DNA sequence was obtained from a 2.1 kb Stu I fragment of the genomic clone HGLG4. The vertical lines indicate identical nucleotides. The bent arrows indicate the transcription initiation sites. The first transcription initiation site in the human sequence is assigned +1.

Fig. 4. Northern blot analysis of human mRNA for $T_{r\alpha}$ transcripts. Poly (A⁺) RNA equivalent to 50 mg of human retina tissue from individual donors was loaded in each lane. The autoradiogram was obtained after hybridization of the Nitroplus 2000 membranes with the ³²P-labeled HG3 cDNA probe. Eyes from all three donors show two sizes of mRNA for $T_{r\alpha}$, but their relative intensities are different.

Northern blot analysis

Northern blots of poly (A^+) RNA from human retinal tissues were probed with ³²P-labeled HG3. Two transcripts with sizes of 1.45 kb and 2.46 kb were found in all three donor retinas but their relative intensities were different (Fig. 4).

Transcription Initiation Site Determination

Total RNA from batches of human retinas was used to map the 5'-end of the human $T_{r\alpha}$ transcript by primer extension and S1 nuclease protection. Two major transcription initiation sites were found in the human $T_{r\alpha}$ gene at nucleotides 1 and 5, respectively (Fig. 5a and 5b, arrowheads). These two sites were clearly seen when the synthetic 17-base primer was extended by reverse transcriptase in the presence of total human RNA (Lane 1, Fig. 5a). These two sites were also seen when the single-stranded probe generated from a Stu I fragment of HGLG4 and the ³²Plabeled synthetic 17-base primer hybridized to human retina total RNA was digested with S1 nuclease (Lane 2, Fig. 5b). The smallest sized band in Lane 2 may be an artifact resulting from the exonuclease activity of S1 nuclease which removes three AU base pairs adjacent to the presumed transcription initiation sites (24, 25). A minor band that is 20 and 24 bp larger than the two protected bands seen in lane 2, can also be found in primer extension experiment if the autoradiogram is overexposed.

Fig. 5. Mapping the 5'-end of the human $T_{r\alpha}$ gene by primer extension and S1 nuclease protection. Fig.5a, primer extension. Lane 1 contains the primer-extended cDNAs obtained by using 30 μ g total RNA from human retina. The primer was a 17-base oligonucleotide complementary to residues 132 to 148 in Fig. 2. Fig. 5b, S1 nuclease protection. Lane 2 shows the products of S1 nuclease digestion of human total RNA (30 μ g) hybridized with a probe generated from a *Stu* I fragment of HGLG4 and the same ³²P-labeled primer used in the primer extension experiment. The sequencing ladders were obtained from the same labeled primer and *Stu* I genomic fragment used for probe synthesis as in the S1 nuclease protection experiment. The two transcription initiation sites determined are indicated by arrowheads.

DISCUSSION

The cDNA clones HG3 and HG14 contain the published human $T_{r\alpha}$ cDNA sequence (1, 13). HG14 differs in that the 3'-end noncoding region is 1134 bp longer. The comparison of the coding regions of bovine, mouse and human $T_{r\alpha}$ genes is shown in Fig. 6. There is a 93.5% identity between human and bovine sequences and an 89.2% identity between the human and mouse sequences.

Many investigators (3, 4, 7, 26) have found that the amino acid sequences of different mammalian G_{α} subunits are highly conserved. Similarly, in the present study there were only three

																	•																						*	
В:	ATGO	GGGC	CT	GGGG	SCC	AGC	GCT	GAG	GAG	AAG	CAC	TCA	AGG	GAG	CTG	GAA	AAG	AAG	CTG	AAA	GAA	GAT	GCT	GAG	AAA	GAT	GCT	CGA	ACC	GTG	AAA	CTG	CTG/	CTT-	CTG	GGT	GCC	GT	GAA	тсс
Μ:	ATGO	GGG	CT	GGG	GCCI	AGC	GCT	GÀG	GAG	AAG	CAC	тсс	AGA	GAG	CTG	GAG	AAG	λλG	CTG	AAA	GAG	GAT	GCT	GAG	AAG	GAT	GCC	CGC	ACT	GTG	AAA	CTG	CTG	CTT	CTG	Ğт	GCC	GT	GAA'	TCC
H:	ATGO	GGG	GCT	GGGG	GCC	AGT	GCT	GAG	GÀG	AAG	CYC	тсс	AGG	GAG	CTG	GAA	ÀÀG	AAG	CTG	AAA	GAG	GAC	GCT	GAG	AAG	GAT	GCT	CGA	ACC	GTG	AAG	CTG	CTG	CTT	CTG	сст	GCC	GT	GAG	TCC
HT:	м	G	Α	G	A	s	A	Е	Ε	К	н	s	R	Е	L	Е	к	ĸ	L	к	Е	D	A	E	ĸ	D	A	R	т	v	К	L	L	L	L	G	A	G	Е	S
в.	0001	100	СТ		- • • • • •	arc		C & G	ATG		ATT	ATC	CAC	CAG	GAC	000	т. Т.С	тса	CTG		- 	- тст	- 	6 1 6	- 	- ۱۳۳۰		хт с		- 				CTT .	-	TCC	MTC.		~~~	*
M:	GGG	AG	GC	ACT	ATTO	GTC	AAA	CAG	ATG	AAG	ATT	ATC	CAC	CAG	GAC	GGG	TAT	TCG	CTG	GAG	GAA'	TGC	CTC	GAG	TTC	ATT	GCC	ATC	ATC	TAC	GGC	AAC	ACT	CTG	CAG	TCC	ATC	210		ATT
H:	GGGA	AGA	GC.	ACC	ATC	GTC	AAG	CAG	ATG	AAG	ATT	ATC	CAC	CAG	GAC	GGG	TAC	TCG	CTG	GAA	GAG'	TGC	CTC	GAG	TTT	ATC	GCC	ATC	ATC	TAC	GGC.	AAC	ACG	TTG	CAG	TCC	ATC	CTG	GCC	ATC
HT:	G	ĸ	s	т	I	v	ĸ	Q	M	к	Í	I	н	Q	D	G	۲	s	L	Ε	E	с	L	Е	F	I	A	I	I	Y	G	N	т	L	Q	s	I	L	A	I
_	*	*	*				-		*		*		*	*	*	*		*	*		*		*					*		*		*		*						*
B:	GTGC	CGCC	ICC.	ATG/	ACCI	ACA	CTC	AAC	ATC	CAG	TAC	GGA	GAC	TCT	GCG	CGC	CAG	GAC	GAC	GCC	CGA	AAG	CTG.	ATG	CAC	ATG	GCA	GAC	ACC	ATC	GAG	GAG	3GC/	ACG	ATG	CCC.	AAG	GAG.	ATG	TCA
m: 	GTTC		CT.	ATG/		ACG	CTC		ATT	CAG	TAT	GGA	GAT	TCA	GCC		CAG		GAT			AAG	CTC.	ATG	CAC	ATG	GCA	GAT	ACT	ATTO	GAG	GAA	GC/	ACA	ATG	CCC.	AAG	GAG.	ATG	TCA
п: µт.	GIAC		ACC.	M 10/	γ υυ/	T	T.	N	T	CAG	TAC V	600	D	101	GCA A				GAC	٥٠٠٠	200/	AAG V	r	M		M	GCA	GAC	ACT T	ATCO	JAG	GAG	GCI	ACG/	ATG	CCC.	AAG	JAG.	ATG	TCG
	•	r	^		•	•	5		•	¥	•		5	3	^	ĸ	¥	5	5	Ŷ	ĸ	ĸ				14	^	U			E.	E	G			r	~	E .	m	5
					*	*				*			*	*	*		*	*		*	*				*		*	*					*		*		*		*	*
В:	GAC	TC	TC	CAG	CGGG	CTG	TGG	AAG	GAC	TCC	GGT	ATC	CAG	GCC	TGT	TTC	GAC	CGA	GCC	TCA	GAG'	TAC	CAG	стс	AAC	GAC'	TCT	GCT	GGC	TACI	TAT	CTCI	CA(3AC/	CTG	GAG	CGC	CTG	GTA	ACC
Μ:	GAC	ATC?	TT/	CAG	CGC	FT G'	TGG	AAG	GAC	TCG	GGT	ATC	CAA	GCT	TGC	TTT	GAC	CGA	GCC	TCA	GAA'	TAC	CAG	стс	AAT	GAC'	TCC	GCC	GGC	г Ą́с т	TAT	CTCI	CAC	JAC	CTA	GAG	CGT	TG	GTG.	ACT
H:	GAC	ATC!	TC	CAG	CGG	CTG	TGG	AAG	GAC	TCC	GGT	ATC	CAG	GCC	TGT	TTT	GAG	CGC	GCC	TCG	GAG'	TAC	CAG	стс	AAC	GAC	TCG	GCG	GGC	LVC	LAC	CTCI	rcco	3AC(CTG	GAG	CGC	CTG	GTA/	ACC
HT:	D	I	I	Q	R	L	W	ĸ	D	s	G	I	Q	A	с	F	Е	R	A	s	Е	Y	Q	L	N	D	s	A	G	Y	Y	L	s	D	L	Е	R	L	v	т
											•																													
В·		-	-	CTC.		3.CT	G N N	C A G	С А Т	GTG	- ста	-	-	- רמיז	070	 	200	3.CG	- сст	а. Т.	- ۱۹۳۰	~~~		~ × ~	T	TCC	TTC.		220	~~~	1.			A TTC	PTP-C	2 8 47	-			
м:	CCA	GAT	LAC LAC	GTG	CCC	ACT	GAG	CAG	GAC	GTG	TTG	CGT	TCT	CGT	GTC	111	ACC	ACG	GGT	ATT	ATCO	GAG	ACG	CAG	TTC	TCC	TTC.		2AC	CTC/	AC'		1001	ATG		3AI(3160		2000	240
H:	CCG	GGC	FAC	GTG	ccc.	ACC	GAG	CAG	GAC	GTG	CTG	CGC	TCG	CGA	GTC	AAG	ACC	ACT	GGC	ATC	ATC	GAG	ACG	CAG	TTC	TCC	TTC	AAG	SAT	CTC	ACC	TCC	de	ATG	TCO	SAT(STG	SGC	1000	TAG
HT:	P	G	Y	v	P	т	Е	Q	D	v	L	R	s	R	v	ĸ	т	т	G	I	I	E	т	0	F	s	F	к	D	L	N	F	R	M	F	D	v	G	G	0
																								-																-
-	*	*			*						*		*		*			*			*				*					*	_	*						*		
В: м.	CGC	ICA(JAG	CGC	AAG.	AAG	TGG.	ATC	CAC	TGC	TTC	GAG	GGG	GTG	ACC	TGC	ATC	ATC	TTC.	ATCO	GCG	GCG	CTG	AGC	GCC	TAC	GAC	ATGO	STG	CTGG	STGO	SAAG	ACG	IACO	SAAG	STG	AACC	GCI	TGO	CAC
ы. ц.	CGC		386		~~~ } } <i>~</i>	AAG	TGG	ATC	CAC	TGC	111	GAG	CCC	GTG	ACG	TGC	ATC	ATT	TTC.	ATCO	SCTO		CTG	AGC	GCT	TACO	GAC	ATGO	FIG	TGG	TGC	JAGO	ACG	ACG	SAA(TG/	AACC	GA	ATGO	CAC
HT.	R	cou	F		K K	ĸ	100	T	H	- rec	F	GAG	200	010	T		AIC.	T	F	T	ی م	کانا	r	AGC	کانان	V	D	M	10	TAG	arec v	SAGO	ACG	ACG	SAA(51G/	N	GC	ATGO	
	••	5	-	~		ĸ		•		C	•	-	J	•	•	C	•	•	£	•	^	<u>^</u>	5	3	<u>^</u>	+	U	14	•		•	5	U	U	с.	•	I.	R	ы	п
			*					*			*	*					*		· *				*	*					*		**			*	*		*		*	
В:	GAG	AGCO	CTG	CAC	CTG	TTC	AAC.	AGT	ATC	TGC	AAC	CAC	CGC	TAC	TTC	GCC	ACC	ACG	TCC.	ATCO	STG	CTC	TTT	стс	AAC	AAG	AAG	SACO	STC	TCT	CGG	GAGA	.AGI	ATCI		AAG	GCGC	CAC	CTT/	AGC
M:	GAG	AGCO	CTT	CAC	CTG	TTC.	AAC.	AGC	ATC	TGC	AAT	CAT	CGC	TAC	TTC	GCC	YCY	ACG	TCT.	ATCO	STG	CTC	TTC	стс	YYC:	AAG	AAG	GACO	STT	LILL	rcco	GAGA	AG?	\TA	AAA	AAG	GCAG	CAC	CTC	AGC
Н:	GAGA	AGCO	CTG	CAC	CTG	TTC	AAC.	AGC	ATC	TGC	AAC	CAC	CGC	TAC	TTC	GCC	ACG	ACG	TCC.	ATCO	STGO	CTC	TTC	CTT	AAC	AAG	AAG	GACO	STC	TCI	TCC	SAG/	AGP	ATC/	AAG	AAG	GCG	CAC	CTCI	AGC
HT:	Е	s	Ľ	н	L	F	N	s	I	С	N	н	R	¥	F	A	т	т	s	I	v	Ľ	F	L	N	ĸ	ĸ	D	v	F	F	Е	ĸ	I	ĸ	к	A	н	L	s
B٠	ATCT		vrrr/	-	220	TIC	AAC			220	ACG	ጥልጥ	220	620	222	ممد	3 3 T	TAC	ATC		376	-	TTC	- 	63 6	CTTC:	AAC		-	-	-	י טידיב	100	200		T N 1 T W	Tree		me	
м:	ATCT	GCT	TC		SAC'	TAC	GAT	Ť.	CCT	AAC	ACT	TAC	GAG	GAT	GCC	GGC	AAC	TAC	ATC		STG	CAG	TTC	CTG	GAG	CTT	AAC	ATG	CA	CGCC	2 A TO	3107	A D C	1201		1 A 1	TCC	ACI	ATC	ACG
H:	ATCI	GTT	TC	CCG	SAC	TAC	GAT	GGA	ccc	AAC	ACC	TAC	GAG	GAC	GCC	GGC	AAC	TAC	ATC	AAG	STG	CAG	TTC	CTC	GAG	CTC	AAC	ATG	GGG	CGCC	GAC	STG	AGC	SAG!	ATC	PAT	TCC	AC	ATG	ACG
HT:	I	с	F	P	D	Y	D	G	P	N	т	Ŷ	E	D	A	G	N	Y	I	ĸ	v	0	F	Ľ	E	L	N	M	R	R	D	v	K	E	I	Y	s	н	M	T
							-																																	
_		*			*				*			*						*									*	*												
ы:	TGCG	CCA	CCC	SAC/	CGG	CAG	AAC	STC	AAG	TTT	GTC	TTC	GAC	GCT	GTC	ACC	GAC	ATC.	ATC	ATC	AAG	GAG.	AAC	CTC	AAA	GAC	rgco	GGG	TC	TTC										
м: u.	TGCG	CTA	CCC	JAC	ACAC	CAG/	AAC	STC	AAG	TTT	GTC	TTT	GAC	GCT	GTC	ACC	GAC	ATT.	ATC	ATC	AGO	GAG	AACO	CTC	AAA	GAC	rGC	GGG	TC	TC										
нт.	1000	A CCA	T	JAC!	ACG(CAG	NAC	JTC	AAA'	TTT	GTC	TTC	GAC	GCT	GTC	ACC:	GAC	ATC.	T	*TC/	AAG(JAG.	AAC	UTC	AAA(GAC:	rGT	JUCC	TC	rrC										
	C	^		D	T.	Ŷ	N	v	r	Ε.	v	E.	D	A	v	T.	U	+	1	T	ĸ	E	N	L	ĸ	U	C	G	L	E.										

Fig. 6. Homology comparison of the coding regions of bovine, mouse and human (present work) $T_{r\alpha}$ genes and their intron positions. The asterisks indicate the nucleotide mismatches between any two species. Arrowheads indicate the locations for the insertion of seven introns for both mouse and human genes. Underlines show the variation in amino acids between human and bovine or mouse $T_{r\alpha}$. B: bovine, M: mouse, H: human, HT: amino acid sequence of human $T_{r\alpha}$.

Ref. 1		Ref. 13		This Work
Nucleotides and number	Amino acid involved	Nucleotides and number	Amino acid involved	Nucleotide

Table II. Mismatches between the published $T_{r\alpha}$ cDNA sequences and this work.

Nucleotides and number	Amino acid involved	Nucleotides and number	Amino acid involved	Nucleotides and number	Amino acid involved
		Coding region	n		
CG(714-715)	Pro	CG(712-713)	Pro	GC(2511-2512)	Arg
CC(774-775)	Thr	CG(771 - 772)	Thr	GC(2571-2572)	Ser
G(778)	Ala	C(775)	Ala	C(2575)	Ala
G(923)	Val	A(921)	Ile	A(2999)	Ile
CTG(1093-1095)	Phe,Cys	TGT(1091-1093)	Phe, Val	TGT(3279-3281)	Phe, Val
		Noncoding regi	ion		
T(24)		a		G(35)	
Delete				G,G,G,G(11,33,44,4789)	
A(63)		G(61)		A(76)	
Insert G(1242)				Between 4872-4873	
		Presumed-cloning artifact	at 5'end		

^a Dashed lines indicate that no information is available.

differences out of 350 residues between the human and bovine $T_{r\alpha}$ sequences, corresponding to the substitution of Glu, Phe, and Asp for Asp, Ser, and Asn respectively at residues 137, 271 and 287. There were only two amino acid differences between human and mouse, corresponding to the substitution of Glu and Phe for Asp and Ser at residues 137 and 271 (Fig. 6).

A comparison of the genomic sequence with the cDNA

sequence of HG14 reveals that the human $T_{r\alpha}$ gene is composed of nine exons interrupted by eight introns. These nine exons predict an mRNA of 2418 nucleotides, in good agreement with the observed mRNA of 2.46 kb in size (Fig. 4). On the other hand, the cDNA sequence published by Van Dop *et al.* (1) predicts a smaller mRNA of 1,285 bases, corresponding to the 1.45 kb band seen in Fig. 4. The difference is due to the absence of a non-coding segment of 1,134 bases in Van Dop *et al.*'s sequence that is probably attributable to an alternative splicing mechanism. The segment in question is indicated by the dotted bar in Fig. 1 and by the bracketed region in Fig. 2. The reasons for having two species of mRNA in human and only one species (2.6kb) in bovine and mouse (9, 2), as well as for having a big difference in size of the 3'-noncoding region between the two human mRNAs remain to be elucidated. Both mRNA species were found in all three human donors, but the relative intensities varied from individual to individual (Fig. 4). It can not be determined from present work if the age is a factor for this variability.

The first seven introns of the human $T_{r\alpha}$ gene are located at positions identical to those in mouse $T_{r\alpha}$ (Fig. 6). The intronexon organization of the mouse $T_{r\alpha}$ gene has been demonstrated to be the same as those of human Goa, Gi2a, and Gi3a genes (2, 4).

Fig. 2 shows the entire DNA sequence for the human $T_{r\alpha}$ gene, starting at the putative cap site and ending at the polyadenylation site. The two mRNA sequences, 1.3 and 2.4 kb, can be generated by alternative splicing (Fig. 2). The exon and intron lengths and their arrangement are summarized in Table 1. Like most of the exons in mammalian genes (27, 28), six of the ten exons (for both mRNA species) are in the size range of 100-170 bp. Intron sizes vary from 85 to 1444 bp, and all have the canonical GT dinucleotide at their 5' ends and an AG dinucleotide at their 3' ends (29,30).

An important element for pre-mRNA splicing is the branch point. In most introns, this is located 18–40 upstream of the 3' intron boundary. Therefore, the branch point consensus YNYYRAY (Y, pyrimidine; R, purine; N, any nucleotide) (31) was searched for in the 3'-ends of the $T_{r\alpha}$ introns. Matches with the consensus sequence are underlined in Table 1. As expected that these branch point consensus sequences may be weakly conserved in higher eukaryotes, only two perfect matches were found in 15 possible branch site sequences. It remains to be determined which of these splice sites may be used during mRNA maturation.

The coding sequence of the human $T_{r\alpha}$ gene is almost identical with the two published human $T_{r\alpha}$ cDNA sequences (1, 13). There are 14 differences from the Van Dop *et al.* (1) sequence. Eight are in the coding region and cause 4 amino acid changes. There are 5 differences from the sequence reported by Lerea *et al.* (13). Four are in the coding region and cause 2 amino acid changes (Table II). In addition, residues 1 through 59 of the cDNA sequence published by Lerea *et al.* (13) are identical with the opposite strand of residues 17 through 75 in Fig. 2 of present work. This is an apparent cloning artifact, and has been observed several times in Nathans' human retina cDNA library (32, 33).

Two major transcription initiation sites were found by primer extension and S1 nuclease protection assays. The first site in the human $T_{r\alpha}$ gene, an A residue, is two nucleotides upstream and the second site, a G residue, is two nucleotides downstream from the single mouse cap site T (Fig. 3). A TATA box (34, 35), a consensus promoter element, is not present in either the human or mouse $T_{r\alpha}$ genes (Fig. 3).

The 5'-end upstream region of the mouse (178 bp) and human (183 bp) $T_{r\alpha}$ genes show 78.1% identity, including seven gaps in mouse (Fig. 3). This high degree of homology indicates that human and mouse may share a common regulatory mechanism for the expression of $T_{r\alpha}$ gene in rod photoreceptors.

ACKNOWLEDGEMENTS

I would like to express my appreciation to Wei-Bao Fong for her excellent technical assistance and to Jana Foster and Indiana Lions Eye Bank Inc. for supplying human donor retinas. This project was supported in part by the Project Development Program, Research and Sponsored Programs, Indiana University at Indianapolis, and in part by a Developmental Grant from Research to Prevent Blindness Inc.

REFERENCES

- Van Dop C., Medynski D.C. and Apone L.M. (1989) Nucleic Acid Res. 17, 4887.
- 2. Raport, C.J., Dere, B., and Hurley, J.B. (1989) J. Biol. Chem. 264, 7122-7128.
- 3. Gilman, A.G. (1987) Ann. Rev. Biochem. 56, 615-649.
- Kaziro, Y., Itoh, H., Kozasa T., Nakafuku, M., and Satoh, T. (1991). Annu. Rev. Biochem. 60, 349-400.
- 5. Allende, J.E., (1988) FASEB J. 2, 2356-2367.
- Weiss, E.R., Kelleher, D.J., Woon, C., Soparkar, S., Osawa, S., Heasley, L.E., and Johnson, G.L. (1988) *FASEB J.* 2, 2841–2848.
- Simon, M.I., Strathmann, M.P., and Gautam, N. (1991) Science 252, 802-808.
- Strathmann, M.P., Wilkie, T.M., and Simon, M.I. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7404-7409.
- Medynski, D.C., Sullivan, K., Smith, D., Van Dop, C., Chang, F.-H., Fung, B.K.-K., Seeburg, P.H., and Bourne, H.R. (1985) *Proc. Natl. Acad. Sci.* USA 82, 4311-4315.
- Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M., Haga, T., Ichiyama, A., kangawa, K., Minamino N., Matsuo, H., and Numa, S. (1985) *Nature*, 315, 242-245.
- Yatsunami, K., and Khorana, H.G. (1985) Proc. Natl. Acad. Sci. USA 82, 4316-4320.
- Lerea, C., Sommers, D.E., Hurley, J.B., Klock, I.B., and Bunt-Milam, A.H. (1986) Science 234, 77-80.
- 13. Lerea, C.L., Bunt-Milam, A.H., and Hurley, J.B. (1989) Neuron 3, 367-376.
- 14. Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119.
- 15. Hurley, J.B. (1987) Annu. Rev. Physiol. 49, 793-812.
- 16. Lolly, R.N., and Lee, R.H. (1990) FASEB J. 4, 3001-3008.
- 17. Stryer, L. (1991) J. Biol. Chem. 266, 10711-10714.
- 18. Hanahan, D. (1983) J. Mol. Biol. 166, 557-580.
- Sanger, f., Nicklen, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 5463-5467.
- 20. Dale, R.M.K., McClure, B.A., and Huchins, J.P. (1985) Plasmid 13, 31-40.
- Chirgwin, J.J., Przbyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979) Biochem. 18, 5294-5299.
- Andrisani, O.M., Hayes, T.E., Roos, B., and Dixon, J.E. (1987) Nucleic Acids Res. 15, 5715-5728.
- Ausubel, F.M. Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1987) *Current Protocols in Molecular Biology*. Wiley Interscience.
- Kroeker, W.D., Kowalski, D., and Laskowski, M., (1976) Biochemistry 15, 4463-4467.
- 25. Kroeker, W.D. and Kowalski, D. (1978) Biochemistry 17, 3236-3243.
- 26. Barbacid, M., (1987) Annu. Rev. Biochem. 56, 779-827.
- 27. Hawkins, J.D. (1988) Nucleic Acids Res. 16, 9893-9905.
- 28. Traut, T.W., (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 2944-2848.
- Breathnach, R., Benoist C., O'Hare, K., Gannon, F., and Chambon, P. (1978) Proc. Natl. Acad. Sci., U.S.A. 75, 4853-4857.
- 30. Mount S. M. (1982) Nucleic Acid Res. 10, 459-472
- 31. Green, M.R. (1986) Annu. Rev. Genet. 20, 671-708.
- 32. Nathans, J., Thomas, D., and Hogness D.S. (1984) Science 232, 193-202.
- 33. Fong, S.-L., and Bridges, C.D.B. (1988) J. Biol. Chem. 263, 15330-15334.
- 34. Dynan, W.S. (1986) TIG 2, 196-197.
- 35. Lewin, B. (1987) Genes, Vol. III, John Wiley & Sons, New York.