Wt fibroblasts	Fanca ^{-/-} fibroblasts	Fanca ^{-/-} iPSC		
40, XY [18] (P2)	40, XY [18] (P2) 4 cells contained a total of 3 chromatid breaks, 2 chromatid gaps, 1 chromosome gap and 2 marker chromosomes	40, XY [15] / 39, X, -Y [2] (P4)		
40, XX [16] (P2)	40, XX [11] (P2)	40, XY [15] / 41, XYY [3](P5)		
40, XX [20] (P3)	40, XY [16] (P2) 5 cells contained breakage, with a total of 13 chromatid breaks, 5 chromatid gaps, 3 double minutes, and 1 marker chromosome	40, XY [16] / 39, X, -Y [3] (P6)		
40, XY [20] (P3) 2 cells exhibited a chromosome break	40, XY [20] (P3) Chromosome breaks in 6 cells, 1 cell contained an acentric chromosome fragment	39, X [20] (P6)		

39, X [18] / 39, X, add(3) [2] (P7)

Table S1

Sample #	iPSC clone (passage #)	CHG result
1	WT 1 + GFP (6)	Chromosome 1: 49 kb gain Start: 173444942 End: 173493944 Chromosome 14: 205 KB gain Start: 69877295 End: 70082914
2	WT 2 + GFP (6)	No significant aberration
3	Fanca ^{-/-} + GFP (5)	Chromsome 4: 152089 KB loss Start: 3463864 End: 1.56E+08 Chromsome 14: 115837 KB loss Start: 8670652 End: 1.25E+08 Chromosome 17: 90580 KB loss Start: 3119246 End: 93699798
4	<i>Fanca^{-/-}</i> + GFP (4)	No significant aberration
5	<i>Fanca^{-/-}</i> + GFP (4)	No significant aberration
6	Fanca ^{-/-} + FANCA (4)	Chromosome 2: 3474 KB loss Start: 39924441 End: 43399236 Chromosome 19: 3599 KB loss Start: 20414325 End: 24013487
7	<i>Fanca^{-/-}</i> + FANCA (4)	No significant aberration
8	Fanca ^{-/-} + FANCA (4)	No significant aberration

Table S2

Clone #	Normal donor iPSC	FANC-A + <i>FANCA</i> iPSC
1	46 XY [20]	46 XY [20]
2	46, XY [20]	46 XY [18]
3	46 XY [20]	46 XY [20]

Table S3

Figure S1

D

Ε

20-

0.

Fanca^{-/-} fibroblasts sample #1

4 4

9

88

14

🎾 🖗 19

5

B

10

84

15

S Y

日日

х

В

С

Α

С

FA-A+ FANCA iPSC#2

anana 1	approximate 2		3	anua 4	40.688378 30-03548 5
6	deposite Politica P	8 9	10	57 JE 11	12
13	14	15	16	17	18
19	8 6 20	21	會意 22	×	(i Y

Supplemental Legends

 Table S1: Summary of karyotype analyses of fibroblasts and iPSC lines. Number of

 metaphases analyzed and passage number are indicated in brackets.

Table S2: Comparative genomic hybridization (CGH) of murine fibroblasts and resultant iPSC. DNA extracted from the starting fibroblast population and resultant iPSC was assessed for chromosomal imbalances using an oligo-based 44k array platform. Chromosome gains or losses observed in unique samples are denoted.

 Table S3: Summary of human iPSC line karyotype analysis.
 The number of metaphases

 analyzed is noted in brackets.

Figure S1: Engraftment, transduction efficiency and teratoma formation. (A) Competitive repopulation of *Fancc^{-/-}* and *Fanca^{-/-}* low-density mononuclear bone marrow cells. 5x10⁵ knock-out test cells (CD45.1) and 5x10⁵ wt competitor cells (CD45.1/CD45.2) were co-injected into lethally irradiated wt BL-6 (CD45.2) recipient mice. The figure shows the mean percentage of test (solid black bars) and competitor cell (open white bars) chimerism in the graft at eight weeks post-transplantation (±SD. *Fancc^{-/-}*: n=36 mice; *Fanca^{-/-}*: n=19 mice). **P<0.01 for the comparison between *Fancc^{-/-}* and *Fanca^{-/-}* chimerism (Wilcoxon rank-sum test). (B) Reprogramming efficiency of 1x10⁵ wt or *Fanca^{-/-}* TTF reprogrammed in the absence of c-Myc (Okt3/4, Sox2, Klf4). (C) Assessment of retroviral transduction efficiency. Wt (black bars) and *Fanca^{-/-}* (open bars) tail-tip fibroblasts were transduced with an eGFP-encoding retrovirus at the time of reprogramming. Percentage of GFP+ fibroblasts was determined after 48hrs by FACS analysis (n=3, ±SD). (D) Hematoxylin-eosin stains of teratomas obtained by subcutaneous injection of *Fancc^{-/-}* iPS cells (4x and 20x magnification). (E) Immunofluorescence demonstrating the expression of pluriotency markers in *Fanca^{-/-}* iPSC. SD: Standard deviation

Figure S2: Fanca^{-/-} tail-tip fibroblasts contain increased chromosome breaks. (A) Median percentage of tail-tip fibroblasts containing \geq 5 γH2AX four days after the infection with the reprogramming viruses. NAC: N-acetylcysteine (100 µM). (B) Example of Fanca^{-/-} fibroblast karyogram displaying chromosome breaks prior to reprogramming. **p< 0.01, NS: not significant

Figure S3: Hypoxia enhances fibroblasts growth and reprogramming. (A) Growth rate of wt and *Fanca*^{-/-} fibroblasts between days 10-20 post derivation in 21% and 5%O₂. Solid line: 21%O₂, broken line: 5%O₂, solid circle: Wt, open circle: *Fanca*^{-/-} (n=9, ±SEM. **p<0.01 for comparison of cell number at 5% and 21%O₂ in wt). (B) Fold increase of iPS reprogramming efficiency in 21% or 5% O₂ (wt: n=18; *Fanca*^{-/-} n=14 independent reprogramming experiments, *P<0.05, **P<0.01 for the comparison of 21% vs. 5%O₂). (C) FANCA expression as demonstrated by immunoblot in *Fanca*^{-/-} iPS clones that were control transduced with eGFP or complemented with *FANCA*.

Figure S4: **Human Fanconi anemia iPSC are pluripotent**. (A) Immunofluorescence of uncomplemented patient-derived FA-A and FA-C iPSC. (B) Karyogram of a complemented patient-derived FA-A iPSC line.