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Text S2 Unlinked loci

An additive trait, z, is determined by a very large number of unlinked loci. Under the infinitesimal

model, a pair of individuals with trait values y, z produce o↵spring with a normal distribution of trait

values, with mean (y + z)/2 and variance v/2. The population is at linkage equilibrium, with variance

v. The trait distribution in generation t,  t(z), has variance v and mean z̄ = v(t � 1/2). The o↵set

of 1/2 is arbitrary and is chosen to simplify the form of the expected number of o↵spring of a haploid

individual, which is ez�z̄�v/2 = ez�vt. This is normalized such that the mean over z is always 1, as

required. (Here, and in the following derivation, we will use the relation E [e↵z] = e↵m+↵2v/2, where the

mean and variance of the distribution are m, v, respectively. For ↵=1, the normalization factor e�v/2

ensures that E
⇥
ez�z̄�v/2

⇤
= 1).

A single copy of a favorable allele, with selective advantage s > 0, arises at time t = 0 on a genetic

background z. Note that the individual with the allele thus has fitness (1 + s)ez. The allele’s chance of

fixation is P
0

(z), and of loss, Q
0

(z) = 1�P
0

(z). Since the distribution of z shifts by v in each generation,

we must have Pt(z) = P
0

(z � vt).

The fixation probability depends on the distribution of o↵spring number, and so is sensitive to the

choice of life cycle. For example, if haploid individuals had a chance ✓ of surviving to breed, and then

had a Poisson number of o↵spring with expectation 1/✓, the variance of o↵spring number would be 1/✓,

and fixation probability would be reduced by a factor ✓. Thus, it is simpler to assume fertility selection,

in which all di↵erences in fitness are due to di↵erences in the mean number of o↵spring produced. We

consider two models: polygamous and monogamous. In the first model, an individual with trait value z

produces a Poisson number of o↵spring with expectation ez, each with a di↵erent mate, with the mates’

trait values drawn from the distribution  (y)ey. In the second model, mated pairs with trait values {y, z}
are chosen with probability  (y) (z) and produce a Poisson number of o↵spring with expectation ey+z.

This generates substantially more random drift, because the random value of an individual’s mate a↵ects

all its o↵spring, rather than just one.

Polygamy

The probability of loss is given by averaging over the distribution of o↵spring number, j, over the

distribution of trait values of the mates, y, and finally, over the distribution of trait values of o↵spring,
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where � = (1 + s)ez and the distribution of mate values, with density  (y)ey, is a Gaussian with mean

v/2 and variance v. �(x|z, y) is the distribution of o↵spring trait values, which is Gaussian with mean

(z + y)/2 and variance v/2. Assuming that s ⌧ 1, P = O (s), and substituting for �, we have:

P
0

(z) =(1 + s)
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�1
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Z 1
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(x)dxdy

� 1/2
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�1
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�1
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1

(x)dxdy

◆
2

+O �
s3
�
. (16)

Note that this expansion breaks down for su�ciently large z – the following derivation only applies to

populations in which no more than a negligible number of individuals have a trait value z high enough

such that P
0

(z) approaches 1. We will verify below that this includes realistically-sized populations.

Eq. (16) can be rewritten as:

P
0

(z) = (1 + s)P̃
0

(z)� 1

2
P̃
0

(z)2 +O �
s3
�
, (17)

where P̃
0

(z) is given by
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0
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(In the last line we have used that P
1

(x) = P
0

(x � v).) We can think of (1 + s)P̃
0

(z) as the expected

long-term contribution of an individual with value z - that is, its reproductive value [49].

Notice that Eq. (17) implies that P
0

(z) = P̃
0

(z) + O �
s2
�
. In other words, to lowest order in s, P

0

is an eigenfunction of the “tilde” operator defined in Eq. (18). This operator resembles a generalized

Weierstrass transform or Gaussian filter, which have exponentials as eigenfunctions. This suggests that
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we guess that P
0

(z) can be approximated by an exponential: P
0

(z) = 2sCe↵z +O �
s2
�
, where C and ↵

do not depend on z. Eq. (18) then gives P̃
0

(z) = 2sC exp
⇣
z + ↵

�
z
2

� 3v
4

�
+ ↵2

2

3v
4

⌘
. Equating our guess

for P
0

(z) and our expression for P̃
0

(z), we see that we must have ↵ = 2 +O (s) for consistency.

To determine the constant C, take the expectation of Eq. (17) over the distribution of z,  (z). Let the

average fixation probability at time t be E [Pt[z]] = P̄ . (Since P̄ stays the same across generations, we can

drop the subscript.) Taking the expectation of Eq. (18) over log fitness z, we find that E
h
P̃
0

i
= E [P

0

].

Using this, we can simplify the expectation of Eq. (17) to obtain, to leading order in s,

2sP̄ = P (z)2 = P̄ 2 +Var [P ] . (19)

This is a discrete-time version of Eq. (3), above. Since we know that P (z) has the form 2sCe2z, and z

has a normal distribution with mean � v
2

, variance v, we have that P̄ = 2sCev and P (z)2 = 4s2C2e6v.

Eq. (19) thus implies that C = e�5v, so P̄ = 2se�4v + O �
s2
�
. (Note that P (z) = 2se2z�5v does

not approach 1 until z ⇠ 5v
2

� log(2s), a trait value too large to be found except in impossibly large

populations.) Recall that the variance in log fitness is equal to the rate of change in mean log fitness,

v = NU
⌦
P̄ log(1 + s)

↵
, where the brackets denote the expectation over s. Inserting our expression for

P̄ , this becomes v = 2NU hs log(1 + s)i e�4v = v
0

e�4v, where v
0

= 2NU hs log(1 + s)i is baseline rate of

increase in mean log fitness in the absence of interference. This implicit equation for v has the solution

v = 1

4

W (4v
0

). This implies that v increases only logarithmically with v
0

for v
0

� 1.

Monogamy

The derivation for this case proceeds in the same way, but with the order of events changed. The

probability of loss is given by averaging over the randomly chosen mate, with trait value y, then over the

distribution of o↵spring number, j, and then over the distribution of trait values of o↵spring, x:
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where � = (1 + s)ey+z. Assuming that s ⌧ 1, P = O (s), and substituting for �, we have:

P
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0
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�
, (20)

where R
0

(z) is defined as
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The first term on the right-hand side of Eq. (20) is proportional to P̃
0

(z), which is defined as before. By

the same argument as above, P
0

(z) = P̃
0

(z) + o(s), so if we guess that P
0

(z)=2sCe↵z , we find that for

consistency we must again have ↵ = 2. Taking expectations of both sides of Eq. (20) over the distribution

of log fitness z and again using P
1

(x) = P
0

(x� v) gives the constant C = e�9v. Thus P (z) = 2se2z�9v,

and again we see that our assumption that P (z) ⌧ 1 is valid for any biological value of z. Taking the

expectation over the distribution of z gives the average fixation probability, P̄ = 2se�8v. The rate of

increase of mean log fitness is therefore v = 1

8

W (8v
0

).

Simulations

Figure S2 compares these predictions with C simulations in which a single individual carrying an allele

with advantage s = 0.05 is introduced in a single background with value z, and then reproduces as a

branching process according to the infinitesimal model (i.e., the distribution of log fitnesses is  (y)ey for

mates, �(x|y, z) for o↵spring, etc.). The simulation results agree well with the predictions. Lineages were

classified as successfully sweeping once they grew to more than 5000 individuals. (Since 5000P̄ > 20 for

all simulated parameters, essentially all lineages that reach size 5000 should fix.) The left panel is for

the polygamous model, with variance v = 0, 0.2, 0.4, while the right panel is for the monogamous model,

with v = 0, 0.1, 0.2; recall that z is distributed with mean �v/2, variance v. When there is no variance in

the population (v = 0), the model is that an individual with value z mates with another individual with

value y = 0, to produce o↵spring with x = z/2; there is no di↵erence between monogamy and polygamy

in this case. Note that the more detailed simulations of individuals with long linear chromosomes shown

in Figure 3 also confirm the analytical results for the case of polygamy.


