Table S1. Wolbachia, SGHV and Trypanosoma prevalence in Gff populations (dividedby mtDNA haplogroup and sex as well as total) belonging to:

	mtDNA	Sex	Sample Size	% Wolbachia	% SGHV	% Trvpanosoma
	Ν	Ŷ	7	28.6	28.6	14.3
AR	N	8	3	0	0	0
	То	tal	10	20	20	10
	N	Ŷ	38	50	7.9	7.9
BK	Ν	8	31	58.1	6.5	9.7
	То	tal	69	53.6	7.2	8.7
	Ν	Ŷ	8	12.5	25	25
	Ν	3	2	0	50	0
BN	S	Ŷ	2	0	0	50
	S	3	3	0	0	33.3
	Total		15	6.7	20	26.7
	Ν	Ŷ	14	57.1	0	7.1
DK	N	8	14	71.4	35.7	21.4
	Total		28	64.3	17.9	14.3
	N	9	0	-	-	-
MY	Ν	3	16	31.3	25	12.5
	Total		37	51.4	10.8	5.4
	Ν	\$	7	14.3	14.3	57.1
OS	N	8	13	23.1	23.1	30.8
	То	tal	20	20	20	40
	N	Ŷ	10	20	20	20
PT	Ν	3	7	0	0	0
	То	tal	17	11.8	11.8	11.8

(a) the northern microsatellite group: AR, BK, BN, DK, MY, OS and PT

	mtDNA	Sex	Sample Size	% Wolbachia	% SGHV	% Trypanosoma
	S	Ŷ	19	31.6	0	26.3
BU	S	3	15	26.7	0	20
	То	otal	34	29.4	0	23.5
	S	Ŷ	20	75	0	0
BV	S	8	15	40	13.3	0
	То	otal	35	60	5.7	0
	Ν	Ŷ	19	57.9	5.3	26.3
JN	Ν	3	21	71.4	23.8	42.9
	Total		43	65.1	14	34.9
	S	Ŷ	5	100	0	0
KL	S	8	5	100	0	0
	Total		10	100	0	0
	S	Ŷ	19	5.3	15.8	10.5
NA	S	3	20	10	20	25
	То	otal	40	7.5	17.5	17.5
	S	Ŷ	12	83.3	0	16.7
SS	S	3	29	89.7	13.8	44.8
	Total		52	86.5	7.7	28.8

(b) the southern microsatellite group: BU, BV, JN*, NA, KL and SS

*Both northern (N) and southern (S) mtDNA haplogroups co-occur in JN individuals

(J. S. Beadell et al., PLoS Negl. Trop. Dis. 4:e636, 2010), but the individuals we have infection data for are all assigned to the northern haplogroup.

	mtDNA	Sex	Sample Size	% Wolbachia	% SGHV	% Trypanosoma
	S	Ŷ	9	44.4	0	22.2
КВ	S	3	15	53.3	0	33.3
	То	tal	24	50	0	29.2
	Ν	9	8	37.5	62.5	12.5
	N	8	7	0	28.6	57.1
KF	S	Ŷ	1	0	100	0
	S	8	1	0	0	0
	То	tal	17	17.6	47.1	29.4
	S	9	14	50	21.4	21.4
КК	S	ð	14	21.4	14.3	7.1
	Total		28	35.7	17.9	14.3
	Ν	4	8	0	12.5	0
	N	8	4	0	25	25
KR	S	9	0	-	-	-
	S	8	3	0	33.3	0
	Total		15	0	20	6.7
	N	9	4	0	0	25
	Ν	8	5	20	0	20
MS	S	Ŷ	5	0	0	20
	S	8	2	0	0	0
	Total		16	6.3	0	18.8

Table S2. (a) *Wolbachia (Wol.)*, SGHV and *Trypanosoma (Tryp.)* individual infection comparisons. Group means were compared by simple logistic regression contrast. Tsetse flies were assigned to groups based on sampling locality (abbreviations from Table 1), microsatellite data (n=north, s=south, w=west) and mtDNA data (N=north, S=south). We also compared sexes (F=female, M=male) within these groups. The table only contains comparisons with significant p-values (Pr(>|z|)). P-values have also been corrected (Adj(Pr(>|z|))) using logically constrained multiplicity adjustment (P. H. Westfall, J. Am. Stat. Assoc. 92:299-306, 1997), except in the case of comparisons involving sampling locality where 'free combination' adjustment was used (Westfall and SAS Institute, Cary, NC 1999). Comparisons significant after adjustment are shown in bold type (Adj(Pr(>|z|))<0.05).

		Wolbachi	ia	
Comp	arison	z	Pr(> z)	Adj(Pr(> z))
S	n	2.49	0.013	0.013
n	W	2.73	0.006	0.006
S	w	4.63	0.000	0.000
BV (F)	BV (M)	2.04	0.042	0.514
BK	BN	2.62	0.009	0.285
BK	BU	2.28	0.022	0.501
BK	KF	2.48	0.013	0.374
BK	MS	2.69	0.007	0.251
BK	NA	4.11	0.000	0.003
BK	OS	2.52	0.012	0.352
ВК	PT	2.73	0.006	0.233
BU	NA	2.31	0.021	0.482

BV	AR	2.08	0.038	0.645
BV	BN	2.79	0.005	0.204
BV	BU	2.51	0.012	0.355
BV	KF	2.69	0.007	0.251
BV	MS	2.86	0.004	0.172
BV	NA	4.21	0.000	0.002
BV	OS	2.73	0.006	0.233
BV	PT	2.92	0.003	0.149
DK	AR	2.23	0.025	0.525
DK	BN	2.91	0.004	0.152
DK	BU	2.68	0.007	0.251
DK	KF	2.84	0.004	0.181
DK	KK	2.11	0.035	0.624
DK	MS	2.98	0.003	0.128
DK	NA	4.32	0.000	0.001
DK	OS	2.89	0.004	0.163
DK	PT	3.06	0.002	0.103
JN	AR	2.36	0.018	0.449
JN	BN	3.01	0.003	0.119
JN	BU	3.04	0.002	0.111
JN	KF	3.04	0.002	0.111
JN	KK	2.39	0.017	0.434
JN	MS	3.08	0.002	0.100
JN	NA	4.61	0.000	0.000
JN	OS	3.12	0.002	0.090

s (N	M) s	(F)	2.25	0.024	0.071
	Compariso	n	z F	Pr(> z) Ad	j(Pr(> z))
			SGHV		
SS	6	РТ	4.53	0.000	0.000
SS	6	OS	4.70	0.000	0.000
SS	6	NA	6.03	0.000	0.000
SS	6 1	MS	4.12	0.000	0.003
SS	6	KK	4.32	0.000	0.001
SS	6	KF	4.51	0.000	0.000
SS	6	KB	3.23	0.001	0.066
SS	6	JN	2.39	0.017	0.434
SS	6	DK	2.25	0.025	0.522
SS	6	BV	2.73	0.006	0.233
SS	6	BU	4.94	0.000	0.000
SS	6	BN	4.05	0.000	0.004
SS	6	BK	3.63	0.000	0.018
SS	6	AR	3.65	0.000	0.016
Kł	<	NA	2.68	0.007	0.253
KE	3	PT	2.35	0.019	0.452
KE	3	OS	2.00	0.045	0.698
KE	3	NA	3.46	0.001	0.032
KE	3	MS	2.44	0.015	0.401
KE	3	KF	2.04	0.042	0.673
KE	3	BN	2.37	0.018	0.439
JN	1	PT	3.23	0.001	0.066

Ν	S	2.28	0.022	0.022
KF	ВК	3.62	0.000	0.019
KF	BV	3.07	0.002	0.111
KF	DK	2.03	0.042	0.756
KF	JN	2.60	0.009	0.343
KF	KK	2.03	0.042	0.756
KF	NA	2.24	0.025	0.608
KF	PT	2.12	0.034	0.701
KF	SS	3.33	0.001	0.051

		Trypanoso		
Comparison		Z	Pr(> z)	Adj(Pr(> z))
s (M)	s (F)	2.39	0.017	0.050
BU	BK	1.99	0.046	0.796
JN	BK	3.24	0.001	0.074
KB	ВК	2.36	0.018	0.527
KF	ВК	2.16	0.031	0.681
OS	BK	3.11	0.002	0.105
OS	DK	1.96	0.050	0.813
OS	KK	1.96	0.050	0.813
OS	KR	1.97	0.048	0.805
SS	BK	2.76	0.006	0.255

 Table S2. (b) Wolbachia (Wol.), SGHV and Trypanosoma (Tryp.) co-infection

 comparisons. Group means were compared by multiple logistic regression contrast. For

 two-infection comparisons, the groups compared were microsatellites, mtDNA and

 sampling site (only: AR, BK, BN, DK, JN, KF, KK, NA, OS, PT and SS). For three

 infection comparisons, the groups compared were microsatellites (n=north, s=south,

 w=west) and mtDNA (N=north, S=south). In two-infection comparisons, one infection

 was compared for differences between groups when the other infection was present (+)

 or absent (-). In three-infection comparisons, one infections were present (+) or absent

 (-). Only comparisons with significant p-values (Pr(>|z|)) are reported. Multiple

 comparison correction was done using logically constrained multiplicity adjustment

 (Westfall ANA (N=combination' adjustment was used (Westfall a) åÄUCEJÁQ• cã: chÉOæ* ÉA

 ÞÔÉA1999). Adjusted p-values (Adj(Pr(>|z|))) smaller than 0.05 are shown in bold type.

Wol-							
	Comp	arison	Z	Pr(> z)	Adj(Pr(> z))		
	SGHV (N)	SGHV (S)	2.36	0.018	0.037		
	SGHV (KF)	SGHV (BK)	2.04	0.041	0.828		
	Tryp (BN)	Tryp (BK)	2.14	0.032	0.763		
	Tryp (JN)	Tryp (BK)	2.89	0.004	0.208		
	Tryp (JN)	Tryp (KK)	2.34	0.019	0.605		
	Tryp (JN)	Tryp (NA)	1.98	0.047	0.860		
	Tryp (JN)	<i>Tryp</i> (PT)	2.17	0.030	0.746		
	Tryp (KF)	Tryp (BK)	2.46	0.014	0.512		

Tryp (KF)	Tryp (KK)	1.92	0.055	0.892
Tryp (OS)	Tryp (BK)	2.56	0.010	0.423
Tryp (OS)	Tryp (KK)	2.02	0.044	0.844
		SGHV-		
Comp	arison	Z	Pr(> z)	Adj(Pr(> z))
Wol (s)	Wol (w)	4.2	0.000	0.000
<i>Wol</i> (n)	Wol (w)	2.44	0.015	0.053
Wol (s)	<i>Wol</i> (n)	2.31	0.021	0.074
<i>Wol</i> (BK)	Wol (AR)	1.94	0.052	0.837
<i>Wol</i> (BK)	Wol (BN)	2.41	0.016	0.491
<i>Wol</i> (BK)	Wol (NA)	3.8	0.000	0.010
<i>Wol</i> (BK)	Wol (OS)	2.4	0.016	0.494
Wol (BK)	Wol (PT)	2.57	0.010	0.366
Wol (DK)	Wol (AR)	2.07	0.038	0.748
Wol (DK)	Wol (BN)	2.52	0.012	0.410
<i>Wol</i> (DK)	Wol (NA)	3.7	0.000	0.013
Wol (DK)	Wol (OS)	2.48	0.013	0.437
Wol (DK)	Wol (PT)	2.65	0.008	0.311
Wol (JN)	Wol (AR)	2.28	0.023	0.599
Wol (JN)	Wol (BN)	2.74	0.006	0.259
Wol (JN)	Wol (NA)	4.19	0.000	0.002
Wol (JN)	Wol (OS)	2.86	0.004	0.192
Wol (JN)	Wol (PT)	2.98	0.003	0.144
Wol (KK)	Wol (NA)	2.77	0.006	0.243
Wol (SS)	Wol (AR)	3.24	0.001	0.066

Wol (SS)	Wol (BK)	3.29	0.001	0.056
Wol (SS)	Wol (BN)	3.71	0.000	0.013
Wol (SS)	Wol (DK)	2.24	0.025	0.623
Wol (SS)	Wol (JN)	2.16	0.031	0.689
Wol (SS)	Wol (KK)	3.46	0.001	0.033
Wol (SS)	Wol (NA)	5.57	0.000	0.000
Wol (SS)	Wol (OS)	4.26	0.000	0.002
Wol (SS)	<i>Wol</i> (PT)	4.22	0.000	0.002
Tryp (BN)	Tryp (BK)	2.11	0.035	0.790
Tryp (JN)	Tryp (BK)	2.77	0.006	0.285
Tryp (JN)	Tryp (NA)	1.95	0.051	0.879
Tryp (OS)	Tryp (BK)	2.62	0.009	0.389
Tryp (OS)	Tryp (NA)	1.98	0.048	0.866
Tryp (SS)	Tryp (BK)	2.38	0.018	0.581

		SGHV+		
Comparison		Z	Pr(> z)	Adj(Pr(> z))
Tryp (s)	<i>Tryp</i> (n)	2.17	0.030	0.146

Тгур-							
Comp	Comparison		Pr(> z)	Adj(Pr(> z))			
Wol (s)	Wol (w)	4.24	0.000	0.000			
<i>Wol</i> (n)	Wol (w)	2.57	0.010	0.036			
Wol (s)	<i>Wol</i> (n)	2.28	0.023	0.079			
Wol (BK)	Wol (BN)	2.16	0.031	0.713			
Wol (BK)	Wol (NA)	3.56	0.000	0.026			
Wol (BK)	Wol (OS)	2.01	0.044	0.815			

Wol (BK)	Wol (PT)	2.51	0.012	0.436
Wol (DK)	Wol (AR)	1.95	0.052	0.852
Wol (DK)	Wol (BN)	2.49	0.013	0.448
Wol (DK)	Wol (KF)	2.04	0.041	0.800
Wol (DK)	Wol (KK)	2.27	0.023	0.629
Wol (DK)	Wol (NA)	3.81	0.000	0.011
Wol (DK)	Wol (OS)	2.4	0.016	0.518
Wol (DK)	Wol (PT)	2.82	0.005	0.226
Wol (JN)	Wol (AR)	2.4	0.017	0.520
Wol (JN)	Wol (BN)	2.85	0.004	0.211
Wol (JN)	<i>Wol</i> (KF)	2.56	0.011	0.395
Wol (JN)	Wol (KK)	2.94	0.003	0.172
Wol (JN)	Wol (NA)	4.37	0.000	0.001
Wol (JN)	Wol (OS)	2.87	0.004	0.201
Wol (JN)	Wol (PT)	3.18	0.001	0.086
Wol (SS)	Wol (AR)	3.16	0.002	0.095
Wol (SS)	Wol (BK)	3.14	0.002	0.098
Wol (SS)	Wol (BN)	3.46	0.001	0.036
Wol (SS)	Wol (KF)	3.42	0.001	0.041
Wol (SS)	Wol (KK)	4	0.000	0.005
Wol (SS)	Wol (NA)	5.25	0.000	0.000
Wol (SS)	Wol (OS)	3.64	0.000	0.020
Wol (SS)	Wol (PT)	3.8	0.000	0.011
SGHV (w)	SGHV (s)	2.1	0.035	0.168
SGHV (n)	SGHV (s)	1.98	0.048	0.168

SGHV (KF)	SGHV (BK)	2.83	0.005	0.255
SGHV (KF)	SGHV (JN)	2.11	0.035	0.801
SGHV (KF)	SGHV (NA)	2.08	0.038	0.820
SGHV (KF)	SGHV (SS)	2.71	0.007	0.331

Tryp+

Comparison		z	Pr(> z)	Adj(Pr(> z))
Wol (BK)	Wol (OS)	1.98	0.048	0.834
Wol (SS)	Wol (JN)	2.17	0.030	0.713
Wol (SS)	Wol (OS)	2.84	0.005	0.220
SGHV (KF)	SGHV (SS)	1.92	0.055	0.904

	SGHV- & Tryp						
Comparison		Z	Pr(> z)	Adj(Pr(> z))			
	Wol. (s)	<i>Wol</i> . (w)	4.04	0.000	0.000		
	<i>Wol</i> . (n)	<i>Wol</i> . (w)	2.57	0.010	0.081		
	Wol. (s)	<i>Wol</i> . (n)	2.01	0.045	0.309		

Wol.+ & Tryp						
Comparison		Z	Pr(> z)	Adj(Pr(> z))		
SGHV (N)	SGHV (S)	2.16	0.031	0.117		

Table S3. Simple and multiple logistic regression models. Multiple models include twopathogen (one pathogen as an independent variable and another as a dependent variable) and three-pathogen regression (two pathogens as independent variables and the third as a dependent variable).

Logistic Pagrossion Models		Dependent Variables				
				Wol.	SGHV	Тгур.
				Рор	Рор	Рор
	Simple		Host	msat	msat	msat
Simple	Silliple		Groups	mtDNA	mtDNA	mtDNA
	spendent Variables			Sex	Sex	Sex
		les	Host	Sex*Pop	Sex*Pop	Sex*Pop
		iab		Sex*msat	Sex*msat	Sex*msat
		Croups	Sex*mtDNA	Sex*mtDNA	Sex*mtDNA	
		ent		SGHV*Pop	Wol*Pop	SGHV*Pop
		nde		Tryp*Pop	Tryp*Pop	Wol*Pop
œ		ede	Two	SGHV*msat	Wol*msat SGHV*n Tryp*msat Wol*msa	SGHV*msat
		pul	Pathogens	Tryp*msat		Wol*msat
				SGHV*mtDNA	Wol*mtDNA	SGHV*mtDNA
				Tryp*mtDNA	Tryp*mtDNA	Wol*mtDNA
			Three	SGHV*Tryp*msat	Wol*Tryp*msat	SGHV*Wol*msat
			Pathogens	SGHV*Tryp*mtDNA	Wol*Tryp*mtDNA	SGHV*Wol*mtDNA

Figure S1. Trypanosome infection detection in challenged flies

In order to confirm that the parasites detected in field flies represent true infections, we performed a laboratory experiment where 12 newly eclosed *Gmm* males were given an infectious bloodmeal containing 10^5 parasites/ml. Subsequently DNA was prepared from whole flies 48h post challenge. PCR amplification was performed on fly DNA using trypanosome *tubulin* primer set (Lanes 1-12). Trypanosome DNA (Lane 13) and midgut DNA from a fly, which was confirmed to be trypanosome infected by dissection and microscopy two weeks after exposure (Lane 14) were used as positive controls. No DNA control is shown in Lane 15 and served as the negative control. Tsetse *β-tubulin (Gmmtub)* was used as an internal control. All PCR conditions were the same as those performed with the *Gff* field samples (40 cycles of 94°C for 1 min., 55°C for 30 sec. and 72°C for 30 sec., with a final 72°C). The PCR experiment was independently repeated twice.