Supplementary Information

Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis

Lei Sun^{*1,2}, Johanna M Rommens^{*3,4}, Harriet Corvol^{5,6}, Weili Li^{1,7}, Xin Li⁷, Theodore Chiang⁷, Fan Lin³, Ruslan Dorfman³, Pierre-François Busson⁸, Rashmi V Parekh³, Diana Zelenika⁹, Scott Blackman¹⁰, Mary Corey⁷, Vishal Doshi¹¹, Lindsay Henderson¹¹, Kathleen Naughton¹¹, Wanda K O'Neal¹², Rhonda G Pace¹², Jaclyn R Stonebraker¹², Sally D Wood¹², Fred A Wright¹³, Julian Zielenski³, Annick Clement^{5,6}, Mitchell L Drumm¹⁴, Pierre-Yves Boëlle^{6,8}, Garry R Cutting^{10,11}, Michael R Knowles¹², Peter R Durie^{15,16}, Lisa J Strug^{7,1}

Correspondence should be addressed to Lisa Strug: <u>lisa.strug@utoronto.ca</u>

* These authors contributed equally to this work

¹Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

²Department of Statistics, University of Toronto, Toronto, Ontario, Canada.

³Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Ontario, Canada.

⁴Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ⁵AP-HP, Hospital Trousseau, Pediatric Pulmonary Department, Inserm U938, Paris, France

⁶Pierre et Marie Curie University-Paris 6, Paris, France.

⁷Child Health Evaluative Sciences, the Hospital for Sick Children, Toronto, Ontario, Canada.

⁸AP-HP, St Antoine Hospital, Biostatistics Department, Inserm UMR-S707, Paris, France.

⁹Centre National de Génotypage, CEA, Evry, France.

¹⁰Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

¹¹McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

¹²Cystic Fibrosis-Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

¹³Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

¹⁴Departments of Pediatrics and Genetics, Case Western Reserve University, Cleveland, Ohio, USA.

¹⁵Program in Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada.

¹⁶Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.

Table of Contents

Supplementary Tables:

Supplementary Table 1 . Sex-specific results for rs3788766 and rs5905283
in <i>SLC6A14</i>
Supplementary Table 2. Association results for SNPs in SLC6A14 and
<i>SLC26A9</i> with and without adjustment for <i>CFTR</i> 4
Supplementary Table 3. SLC6A14 and 157 apical genes with gene-based
and Lasso association result5

Supplementary Figures:

Supplementary Figure 1. Q-Q plot of GWAS results prior to prioritizatio	n
	9
Supplementary Figure 2. GWAS results with and without adjusting for t	he
effect of CFTR	10
Supplementary Figure 3. Manhattan plot of GWAS with 1000 genomes	
imputation of 7,245,292 SNPs	11
Supplementary Figure 4. GWAS-HD flow chart	12
Supplementary Figure 5. SNP rankings from GWAS vs. GWAS-HD	13

		Risk Freq	Allele uency						
	Risk Allele	MI	Non- MI	Sex (Coding of the Risk Allele)	Sample Size (by Genotype)	P value	OR	OR 9:	5%CI
rs3788766	Т	0.737	0.591						
				Female (1 vs. 2)	816 vs. 671	3.20×10 ⁻⁵	1.79	1.36	2.37
				Female (0 vs. 2)	255 vs. 671	2.80×10 ⁻³	1.89	1.25	2.87
				Male (0 vs. 2)	814 vs. 1207	2.10×10 ⁻⁹	2.31	1.75	3.04
				All (0 vs. 1 vs. 2)	1069 vs. 816 vs. 1878	1.28×10 ⁻¹²	1.49	1.34	1.67
rs5905283	С	0.605	0.505						
				Female (1 vs. 2)	849 vs. 488	5.50×10 ⁻⁴	1.66	1.25	2.22
				Female (0 vs. 2)	405 vs. 488	8.96×10 ⁻³	1.61	1.13	2.29
				Male (0 vs. 2)	1014 vs. 1007	3.80×10 ⁻⁷	1.91	1.49	2.45
				All (0 vs. 1 vs. 2)	1419 vs. 849 vs. 1495	1.69×10 ⁻⁸	1.33	1.21	1.49

Supplementary Table 1. Sex-specific results for rs3788766 and rs5905283 in SLC6A14; meconium ileus (MI).

Supplementary Table 2. Association results for SNPs in *SLC6A14* and *SLC26A9* with and without adjustment for *CFTR*. Without adjustment for *CFTR* indicates the results of original GWAS with the site covariate only as in **Figure 1a** and **Table 2**. With adjustment for *CFTR* indicates the results with both the site covariate and the *CFTR* covariate for which Phe508del/ Phe508del genotype is coded as 1 and Phe508del/Other or Other/Other genotypes are coded as 0.

					Without adjustment for <i>CFTR</i>			With adj	ustment	t for CFTR
SNP	CHR	POS	GENE	Risk Allele	Estimate	SE	Р	Estimate	SE	Р
rs4077468	1	204181380	SLC26A9	Т	0.372	0.065	9.88×10 ⁻⁹	0.373	0.065	9.44×10 ⁻⁹
rs7512462	1	204166218	SLC26A9	Т	0.371	0.066	2.14×10^{-8}	0.371	0.066	2.03×10^{-8}
rs7419153	1	204183932	SLC26A9	Т	0.347	0.065	1.01×10^{-7}	0.345	0.065	1.22×10^{-7}
rs12047830	1	204183322	SLC26A9	С	0.293	0.063	3.72×10^{-6}	0.295	0.063	3.26×10^{-6}
rs3788766	Х	115480867	SLC6A14	Т	0.402	0.057	1.28×10^{-12}	0.405	0.057	1.02×10^{-12}
rs5905283	Х	115479909	SLC6A14	С	0.294	0.052	1.69×10 ⁻⁸	0.296	0.052	1.42×10^{-8}
rs12839137	Х	115479578	SLC6A14	С	0.331	0.068	1.20×10^{-6}	0.335	0.068	1.02×10^{-6}

Supplementary Table 3. *SLC6A14* and **157** apical genes with gene-based and Lasso association results. A list of 157 genes was annotated as described in Figure 2.

^a The number of GWAS SNPS within ± 10 kb of the boundaries of indicated gene.

^b Permutation based *P* value for the gene. See Online Methods for details.

^c North American CF Gene Modifier Consortium (NACFGMC) discovery cohort (n=3,763).

^d French replication cohort (n=1,232); For *SLC6A14* and *SLC26A9*, the combined replication results were used when appropriate, combining the French sample with the independent North American sample (n=1,140, **Table 2**).

^e Indicating if the gene was in the multivariate model selected by Lasso in the discovery sample; 1=yes, 0=no.

^f Two apical genes (*MSN* and *SLC34A3* at the end of the table) that were not tagged by GWAS SNPs passing the QC criteria.

^g *CFTR* showed some evidence for association with meconium ileus possibly reflecting the CF mutations that are present.

^h For *MUC20*, there were no GWAS SNPs passing the QC criteria in the French data. ⁱ Evidence for association of *SLC26A9* to meconium ileus was apparent in the North American portion of the replication sample, but was not in the French cohort portion. It remains unclear if this difference is a reflection of chance and limited power due to the smaller sample size of the French cohort, or if there are actual differences in the studied populations.

^j*SLC6A14* was not annotated by AmiGO on March 28, 2010 as localized to the apical plasma membrane, thus it was not included in the analysis restricted to the apical gene list

			Gene		
GENE	CHR	# SNPs ^a	Discovery ^c	Replication ^d	Lasso ^e
SLC6A14 ^j	Х	15	<0.0001	<0.001	0
ABCA7	19	18	0.9832	0.03	0
ABCB4	7	43	0.5761	0.344	1
ABCC2	10	34	0.2613	0.835	0
ABCC6	16	31	0.0565	0.628	1
ABCG5	2	26	0.2233	0.676	0
ABCG8	2	41	0.0261	0.23	1
ACY3	11	7	0.6527	0.305	0
ADAM17	2	9	0.3567	0.228	0
ADRB2	5	15	0.4085	0.304	0
AJAP1	1	50	0.788	0.859	0
AKAP7	6	29	0.6997	0.286	0
AKR1A1	1	5	0.5602	0.168	0
ANK2	4	116	0.6156	0.85	1
ANXA6	5	53	0.4416	0.369	1
AQP1	7	10	0.8664	0.489	0
AQP2	12	6	0.5037	0.596	0
AQP5	12	4	0.4272	0.402	0
AQP8	16	6	0.9199	0.56	0
ATP1B1	1	22	0.8975	0.992	0
ATP2B2	3	62	0.0006	0.283	1

ATP4A	19	11	0.5505	0.763	0
ATP6V0A4	7	39	0.8663	0.95	0
ATP6V0D1	16	4	0.1689	0.956	0
ATP6V0D2	8	20	0.1898	0.918	0
ATP6V1B1	2	13	0.6323	0.338	0
ATP6V1E1	22	12	0.8157	0.045	0
ATP8B1	18	27	0.0123	0.108	1
CA4	17	6	0.1653	0.267	0
CACNB3	12	4	0.8725	0.417	0
CAV1	7	15	0.1856	0.604	1
CD3001 G	17	3	0.6072	0.611	0
CD44	11	53	0.3061	0.168	1
CDHR2	5	9	0 167	0.596	0
$CETR^{g}$	7	49	0.0053	0.001	0
CIB1	15	6	0.5588	0.607	0
	1	8	0.3229	0.007	0
CRB1	1	27	0.3223	0.179	0
CRB3	10	6	0.3027	0.175	0
CSPG4	15	5	0.1625	0.705	1
	21	5	0.1025	0.45	1
CUBN	10	144	0.0021	0.201	1
	16	2	0.2301	0.355	
	2	12	0.0940	0.755	1
	15	12	0.3703	0.391	0
	15	6	0.7505	0.317	0
EGER	15	79	0.7311	0.207	1
	/	70	0.5477	0.757	1 0
	- 17	20	0.0701	0.757	1
ERBB3	17	4	0.3871	0.655	0
ERDD5 F7D	6	10	0.3071	0.00	0
E2RI 2	5	10	0.0017	0.025	0
GIE	11	1	0.7075	0.100	0
GIB6	13	6	0.4034	0.035	0
GNAT3	7	16	0.0752	0.957	0
GPR64	72 72	20	0.0305	0.557	0
IGEBP2	23	7	0.0000	0.51	0
10/ D/ 2	 1	, Q	0.1072	0.000	0
INADI	1	100	0.6673	0.051	0
KCNA1	12	8	0.0075	0.70	0
KCNE1	21	28	0.1000	0.050	0
KCNMA1	10	225	0.0955	0.129	1
KIAA1919	6	5	0 5382	0.037	0
KNCN	1	4	0.9284	0.664	0
	2	11	0.799	0.036	0
I HEPI 5	6	4	0.3254	0.551	0
1 MO7	13	56	0.0267	0 782	1
IRP2	2	65	0.2323	0.964	1
17751	8	10	0.1894	0.072	0
	0		0.1004	0.072	

MAL	2	3	0.9152	0.869	0
MAL2	8	7	0.6686	0.789	0
MGAM	7	27	0.2256	0.191	1
MIP	12	5	0.914	0.768	0
MPDZ	9	31	0.788	0.781	0
MREG	2	37	0.819	0.719	0
MUC1	1	3	0.3971	0.887	0
MUC20 ^h	3	1	0.909	NA	0
MUC3A	2	92	0.1207	0.498	1
MUC3B	7	5	0.4523	0.23	0
MYO1A	12	5	0 338	0.632	0
MYOZB	2	31	0 7972	0.575	0
	11	6	0.456	0.878	0
NPC1L1	7	6	0.4787	0.014	0
NRG1	, 8	260	0.8421	0.781	1
	16	200	0.0421	0.701	0
OTOA	11	25	0.2995	0.02	0
OTOG	2	20	0.5511	0.205	0
	2	30	0.0007	0.05	0
	3		0.2739	0.569	0
	11		0.5776	0.869	1
P2RY4	23	5	0.7478	0.535	0
P2RY6	11	11	0.6034	0.327	0
PDPN	1	25	0.2071	0.244	0
PFKM	12	8	0.2429	0.616	0
PKHD1	6	84	0.0475	0.356	0
PLB1	2	56	0.8802	0.972	0
PRKCI	3	8	0.639	0.756	0
PROM1	4	59	0.2262	0.39	1
PROM2	2	2	0.4913	0.325	0
PTK2	8	38	0.079	0.088	1
RAB14	9	7	0.3595	0.214	0
RAB27A	15	25	0.3257	0.583	0
RHCG	15	5	0.1909	0.581	1
S100G	23	2	0.3144	0.916	0
SCNN1A	12	16	0.3261	0.288	0
SCNN1B	16	18	0.4818	0.826	0
SCNN1G	16	7	0.8408	0.911	0
SHROOM2	23	42	0.5546	0.178	1
SHROOM3	4	92	0.4466	0.224	1
SHROOM4	23	13	0.5186	0.778	1
SI	3	10	0.7507	0.201	0
SLC10A2	13	35	0.9229	0.433	0
SLC11A2	12	8	0.3498	0.971	0
SLC12A2	5	18	0.6973	0.905	0
SLC12A3	16	31	0.6003	0.702	0
SLC14A2	18	57	0.1743	0.724	1
SLC22A11	11	4	0.7337	0.533	0
SLC22A12	11	4	0.0451	0.863	0
		-			

SLC22A18	11	14	0.9952	0.154	0
SLC22A4	5	47	0.1902	0.663	0
SLC22A5	5	24	0.1561	0.375	1
SLC23A1	5	1	0.2446	0.887	0
SLC23A2	20	48	0.0884	0.218	1
SLC26A3	7	19	0.5823	0.613	0
SLC26A4	7	21	0.9859	0.997	0
SLC26A9 ⁱ	1	39	< 0.0001	0.235	1
SLC29A4	7	3	0.0703	0.754	1
SLC30A5	5	12	0.8699	0.907	0
SLC34A2	4	12	0.5698	0.764	0
SLC39A4	8	2	0.1793	0.492	0
SLC3A2	11	7	0.115	0.978	0
SLC46A1	17	3	0.5825	0.145	0
SLC4A5	2	40	0.5031	0.729	0
SLC4A7	3	22	0.5563	0.05	0
SLC5A1	22	15	0.8685	0.435	0
SLC5A12	11	45	0.2398	0.081	1
SLC5A8	12	24	0.5075	0.044	0
SLC6A20	3	24	0.2724	0.564	0
SLC7A5	16	16	0.6744	0.607	0
SLC9A3	5	10	0.0001	0.017	1
SLC9A3R1	17	8	0.5838	0.625	0
SLC9A3R2	16	10	0.2069	0.091	0
SLC9A4	2	55	0.8562	0.012	0
STK39	2	64	0.9003	0.112	0
STX3	11	5	0.4133	0.71	0
STX4	16	2	0.2168	0.632	0
STXBP3	1	12	0.6591	0.502	0
TACSTD1	2	7	0.2121	0.594	0
TCIRG1	11	11	0.6047	0.718	0
TF	3	13	0.7929	0.498	0
TGFBR1	9	10	0.4879	0.746	0
TLR9	3	4	0.0715	0.313	0
TRPM6	9	39	0.4276	0.723	0
TRPV5	7	6	0.3986	0.231	0
UMOD	16	14	0.2544	0.009	0
<i>UPK3A</i>	22	10	0.5462	0.024	0
VANGL2	1	10	0.5457	0.284	0
MSN ^f	23	0	NA	NA	NA
SLC34A3 ^f	9	0	NA	NA	NA

Supplementary Figure 1. **QQ-Plot of GWAS results prior to prioritization**. The original GWAS results without prioritization from the GEE model adjusting for the site covariate using the full 3,763 North American samples (see **Figure 1a** for the corresponding Manhattan plot). No violation of model assumptions is evident, and there is significant evidence of association.

Supplementary Figure 2. **GWAS results with and without adjusting for the effect of** *CFTR*. The x-axis shows the association *P* values (on the -log10 scale) of the original GWAS with the site covariate but without adjusting for the effect of *CFTR* as in **Figure 1a**; the y-axis shows the association *P* values with both the site covariate and the *CFTR* covariate for which Phe508del/Phe508del genotype is coded as 1 and Phe508del /Other or Other/Other genotypes are coded as 0. SNPs within 155 kb of *CFTR* have been removed from this figure, and the SNPs at the bottom-left that have some noticeable discrepancy between the two sets of analyses are the SNPs that are in LD with *CFTR*.

-log10(GWAS p-value without adjustment for CFTR)

Supplementary Figure 3. Manhattan plot of GWAS with 1000 genomes imputation of 7,245,292 SNPs. The reference sample was the 87 CEU subjects extracted from the EUR continental group of the 1000 genomes November 2010 release provided in the four-site (Broad Institute, Michigan University, Boston College and NCBI) merged dataset. The figure only include 78,352 SNPs with *P* values<0.01, with solid circles representing 5,953 genotyped SNPs and empty circles representing 72,399 imputed SNPs.

Supplementary Figure 4. GWAS-HD flow chart. See Online Methods for details on the single-SNP and multi-SNP/gene analyses.

Supplementary Figure 5. SNP rankings from GWAS vs. GWAS-HD. GWAS ranks are based on the original association evidence alone and GWAS-HD ranks are based on SFDR weight-adjusted *q* values after incorporating the apical plasma membrane hypothesis (Online Methods).

