Supplementary Information

ISPD loss-of-function mutations disrupt dystroglycan *O*-mannosylation and cause Walker-Warburg syndrome

Tobias Willer, Hane Lee, Mark Lommel, Takako Yoshida-Moriguchi, Daniel Beltran Valero de Bernabe, David Venzke, Sebahattin Cirak, Harry Schachter, Jiri Vajsar, Thomas Voit, Francesco Muntoni, Andrea S. Loder, William B. Dobyns, Thomas L. Winder, Sabine Strahl, Katherine D. Mathews, Stanley F. Nelson, Steven A. Moore, Kevin P. Campbell^{*}

* correspondence should be addressed to K.P.C.: kevin-campbell@uiowa.edu

Supplementary Figure 1. Genetic and phenotypic distribution of dystroglycanopathy patient fibroblasts analyzed by On-Cell western blot complementation

(a) The table summarizes the On-Cell complementation assay results from 63 patient fibroblasts. Listed are the phenotypic distribution and mutation frequencies in each of the six glycosyltransferase genes within our patient cohort. (b) Pie chart representing the phenotypic distribution of patients analyzed by On-Cell complementation assay. (c) Pie chart representing the mutation frequencies in the patients analyzed by On-Cell complementation assay. The mutation frequencies of each candidate gene roughly correlate with previously published data by Godfrey *et al.* (2007)¹.

Supplementary Figure 2. Western blot with WGA enriched glycoproteins from five WWS patients in complementation group 1

Comparison of fibroblast α -DG glycosylation status reveals complete loss of functional α -DG glycosylation and a comparable hypoglycosylation of core α -DG in all patient samples. Immunoblot was probed with antibodies against the glycosylated form of α -DG (IIH6), core α -DG (G6317), and β -DG (AP83) as loading control. Receptor binding activity was analyzed with Laminin binding overlay assay.

Supplementary Figure 3. Alignment of identical-by-descent (IBD) and homozygosity-by-descent (HBD) intervals among *ISPD* deficient patients. IBD or HBD block size is plotted according to cM along the y-axis, and according to SNP index along the x-axis. The ratio of the width of the block to the height of the block indicates the SNP density (# of SNPs/cM) within the interval. A region on chromosome 7 where three out of four suspected consanguineous samples are homozygous while overlapping with the P2/P3 Z2 region is highlighted by a red box.

Supplementary Figure 4. Genomic sequence analysis of *ISPD* **deficient patients LogRratio (LRR) reveals large exonic deletions in** *ISPD* **P1 and** *ISPD* **P6. The deletions were supported by the Illumina Omni-1 genotyping data. (a)** *ISPD* **P1: 53 contiguous SNPs spanning the two exons were all homozygous. The most outward boundaries of this heterozygous deletion were determined by the flanking SNPs of the 53 homozygous SNPs (rs1528149 and rs9918580), predicting the deletion could be up to 190 kb in size. (b)** *ISPD* **P6: Three SNPs near exon 3 (rs12699786, rs12671637, rs10237809) were not called while these SNPs were called with high confidence in the other 7 samples. The most outward boundaries of this homozygous deletion were determined by the flanking SNPs of the 3 SNPs not called (rs7789712 and rs11972185). (c-g**) Sanger sequencing of *ISPD* deficient patients. Chromatograms with genomic DNA sequence variations are shown for *ISPD* patients P2/3 (**c,d**), P1 (**e**), P4 (**f**), P5 (**g**) and P7 (**h**).

Supplementary Figure 5. qPCR expression analysis of *ISPD* **in human tissues** *ISPD* **shows ubiquitous expression in all tissues analyzed. Highest** *ISPD* **expression was detected in brain. For normalization ribosomal protein Rpl30 was used. Analyzed tissues: Br (brain), He (heart), Ki (kidney), Li (liver), Lu (lung), Ma (mammary gland), PI (placenta), Mu (skeletal muscle), Ov (ovary), Pa (pancreas), Pr (prostate), Sp (spleen), Te (testis), Th (thymus)**

Supplementary Figure 6. ISPD conservation across species

(a) Phylogenic tree of ISPD proteins from different species. ISPD proteins are conserved from men to bacteria. Interestingly, no ISPD homologs are present in flies (*Drosophila melanogaster*) and nematodes (*Caenorhabditis elegans*). The dendrogram was generated using ClustalW sequence alignment. (b) Schematic representation of human and *E.coli* ISPD proteins. The shared proposed CDP-ME synthase catalytic domain is highlighted with a grey box. (c) Protein sequence alignment of protein ISPD sequences from human and *E.coli*. Both proteins sequence share 26% identity and 44% similarity. Identical amino acids are highlighted in black and similar amino acids are highlighted in grey.

Supplementary Figure 7. ISPD is involved in the MEP pathway for isoprenoid precursor synthesis

(a) Schematic representation of the isoprenoid precursor synthesis which differs in human, plant and bacteria (adapted from Rodríguez-Concepción and Boronat, 2002)². Mammals only use the MVA pathway, bacteria only use the MEP pathway, while plants use both pathways spatially separated in the cytoplasm and plastids. In plants both pathways are interconnected through the intermediate IPP (isopentenyl diphosphate, highlighted in blue). The biosynthetic step catalyzed by ISPD is highlighted in red.
(b) 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (ISPD) catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) from 2-C-methyl-D-erythritol 4-phosphate (MEP) and CTP.

Supplementary Figure 8. ISPD mutations impair protein *O*-mannosylation resulting in loss of laminin binding glycan

Schematic representation of the α -DG functional glycan and the known WWS gene products (indicated in blue) that are involved in its synthesis. ISPD defects impair protein *O*-mannosylation, which is the initial step in the synthesis of the laminin binding glycan. LARGE, Fukutin and FKRP are postulated to be involved in the post-phoshoryl modification.

Mutant gene	Clinical phenotype	Zygosity	Nucleotide variant	Amino acid	Reference
Control	n.d.				CRL-2127 (ATCC)
		heterozygous	c.997C>T	p.Pro273Leu	
POMT1	WWS		c.1006T>G	p.Leu276Arg	
			c.85A>C	p.Ser29Arg	
POMT1	CMD	heterozygous	c.1864C>T	p.Arg622*	
			c.512T>G	p.Leu171Arg	
POMT1	LGMD	heterozygous	genomic deletion of exon 18-19	p.Ala589Val fs*38	3
			c.1116+1G>A	p.Gln372fs	
POMT2	WWS/MEB	heterozygous	c.1997A>G	p.Tyr666Cyc.	
			c.794G>A	p.Arg265His	
POMGnT1	WWS/MEB	heterozygous	c.932G>A	p.Arg311Gln	
			c 385delA	n Ile129fs*1	
FKTN	WWS	heterozygous	c 1176C>A	p.Tur302*	GM16192 (Coriell Cell Repository)
EVDD			0.1170C>A	p. Tyr 392	4
FKKP	wws	nomozygous	c.IA>G	p.iviet i v ai	
LARGE	CMD	homozygous	large intra-chromosomal	5	
			duplication inserted into intron 10		

Supplementary Table 1. Summary of control and dystroglycanopathy patient fibroblast cell lines

P1 Wtsl 13 months IIIH onegative biopsy at 12 months MRI at 3 days and 5 months: issuerephals, bearded subcortical dystrophist, CK MRI at 3 days and 5 months: issuerephals, bearded subcortical dystrophist, CK MRI at 3 days and 5 months: issuerephals, bearded subcortical dystrophist, CK P2 WWS 15 months IIH6 negative 3.000 to 13.000 U/I 3.000 to 13.000 U/I biapsy. bipoplasti, cerebelar bilateral microphthalmia decidement P3 WWS 24 months IIH6 negative CK 5,400 U/I NRI at 1 day; massive market dimining of cortes, bipoplasti, cerebelar bilateral microphthalmia bilateral microphthalmia P3 WWS 24 months IIH6 negative CK 5,400 U/I NRI at 1 day; massive market dimining of cortes, bipoplasti, cerebelar bijateral microphthalmia P4 WWS unknown IIH6 negative unknown nuknown mknown CK 5,400 U/I P5 WWS 3 months IIH6 negative unknown mknown mknown Disorde P6 WWS 3 months IIH6 negative dystrophis, bipoplasti, coblestone issencephaly, brain with one state of subcortical heterotopia, thin deceloment mknown CK 5.977 U/I P6 WWS 3 months IIH6 negative dystrophis, bipoplasti, coblestone issencephaly, subdocephals, bipoplasti, coblestone issencephaly, bipoplasti, coblestone issencephaly, bipoplasti, coblestone issencephaly, bipoplasti, coblestone issencephaly, bipoplasti, coblestone issen	Patient	Phenotype	Life span	α-DG functional glycosylation	Muscle	Brain	Eye	Reference
P2WWS16 monthsIIH6 negativeno biopsy, CK 5,400 U/IMKI at 1 day; hydrocephalus with with cataract, persistent marked thinning of cortex, stem arophybilateral microphhalmia with cataract, persistent with cataract, persistent marked thinning of cortex, stem arophybilateral incrophhalmia with cataract, persistent marked thinning of cortex, with startact, persistent marked thinning of cortex, tero by stem arophybilateral optic nerve hypophasic, cobblestone marked thinning of cortex, with startact, persistent marked thinning of cortex, stem arophybilateral optic nerve hypophasic, cobblestone marked thinning of cortex, with startact, persistent marked thinning of cortex, with cataract, persistent marked thinning of cortex, with startact optic nerve hypophasic, cobblestone marked thinning of cortex, marked thinning of cortex, with startact optic nerve biopsy at 1 month beaded subcortical heterolopia, line corpus calosum, brainsten mypolasia, loss of marked subcortical heterolopia, line marked subcortical heterolopia, line marked subcortical heterolopia, line marked subcortical heterolopia, line marked subcortical heterolopia, line with proplasiaCase #1P3WWS3 monthsIIH6 negative dystrophic, CK 2,277 U/IMKI and autopsy: hydrocephalus, creeblant hypophasiaMRI and autopsy: hydrocephalus, line marketCase #1P4WWS3 monthsIIH6 negative dystrophic, CK 2,277 U/IMKI and autopsy: hydrocephalus, line marketCase #1P5WWS3 monthsIIH6 negative dystrophic,MKI and autopsy: hydrocephalus, line corpus calosum, brainactactoreMRI and autopsy: hydrocephalu	Ŀ	SWW	15 months	IIH6 negative	biopsy at 12 months dystrophic, CK 3,000 to 13,000 U/I	MRI at 3 days and 5 months: hydrocephalus, cobblestone lissencephaly, beaded subcortical heterotopia, thin corpus callosum, increased white matter signal, brainstem hypoplasia, cerebellar hypoplasia	bilateral microphthalmia and cataracts, arrested retinal development	
P3WWS24 monthsIIH6 negativeno biopsy, bytoplasia, loss of hypoplasia, coblestoneMRI at 1 day: massive hypoplasia, loss of hypoplasia, loss of issencephaly.bilateral optic nerve hypoplasia, loss of macular pigmentP4WWSunknownIIH6 negativeunknownunknownCase #1 Tissue EP5WWS6 monthsIIH6 negative dystrophic, CK 2,927 U/JMRI and autopsy: hydrocephalus, agyria, coblestone lissencephaly, microphnhalmia with rissue ECase #1 DisorderP6WWS3 monthsIIH6 negative dystrophic, agyria, coblestone lissencephaly, dystrophic, agyria, coblestone lissencephaly, hypoplasia, cerebellar hypoplasia dystrophic, milateralMRI and autopsy: hydrocephalus, milateral milateral milateral milateral milateral milateralCase #1 Disorder DisorderP7WWSanothsIIH6 negative dystrophic, 	P2	SWW	16 months	IIH6 negative	no biopsy, CK 5,400 U/I	MRI at 1 day: hydrocephalus with marked thiming of cortex, cobblestone lissencephaly, brain stem atrophy	bilateral microphthalmia with cataract, persistent hyperplastic primary vitreous, retinal detachment	
P4WWSunknownIH6 negativeunknownCase #10P5WWSunknownIH6 negativeunknownTissue BP6WWS6 monthsIH16 negativebiopsy at 1 monthagyria, cobhestone lissencephalty, beaded subcortical heterotopia, thin corpus callosum, brainstemunilateralDisorderP6WWS3 monthsIH6 negativedystrophic, beaded subcortical heterotopia, thin cataract, optic nerveCase #1 proplasia, crebellar hypoplasiaCase #1 proplasiaP6WWS3 monthsIH6 negativedystrophic, agyria/pechygria, cobhestone lissencephalty, inscrephalty, retinal autopsy: hydrocephalus, agyria/pechygria, cobhestone lissencephalts, inscrephalty, retinal autopsy: hydrocephalus, hypoplasiaCase #1 bisorderP7WWSunknownIH6 negativedystrophic, patrial agenesis of corpus callosum, brainstem hypoplasiaS.9P7WWSunknownIH6 negative cK 6,126 Undystrophic, patrial agenesis of corpus callosum, corpus callosum, cataract, opcia corpealS.9	P3	SWW	24 months	IIH6 negative	no biopsy, CK 3,300 U/I	MRI at 1 day: massive hydrocephalus, cerebellar hypoplasia, cobblestone lissencephaly	bilateral optic nerve hypoplasia, loss of macular pigment	
P5 WRI and autopsy: hydrocephalus, biopsy at 1 month MRI and autopsy: hydrocephalus, agyra; cobblestone lissencephaly, beaded subcortical heterotopia, thin cataract, optic nerve Case #1 P6 WWS 6 months IIH6 negative biopsy at 1 month agyra; cobblestone lissencephaly, hypoplasia microphthalmia with Tissue E Case #1 P6 WWS 3 months IIH6 negative dystrophic, dystrophic, CK 9,577 U/I MRI and autopsy: hydrocephalus, agyraipachygyria, cobblestone Peters' anomaly, retinal dysplasia so P7 WWS unknown IIH6 negative dystrophic, dystrophic, dystrophic, partial pachygyria, hydrocephalus, partial pachygyria, hydrocephalus, partial pachygyria, hydrocephalus, dysplasia as	P4	SWW	unknown	IIH6 negative	unknown	unknown	unknown	Case #1980, Miami Brain and Tissue Bank for Developmental Disorders
P6 WWS 3 months IIH6 negative dystrophic, CK 9,577 U/I MRI and autopsy: hydrocephalus, issencephaly, cerebellar hypoplasia Peters' anomaly, retinal P7 WWS 3 months IIH6 negative dystrophic, dystrophic, partial pachygyria, hydrocephalus, partial agenesis of corpus calonom, partial agenesis of corpus calonom, critical agenesis of corpus calonom, dystrophic, NRL: coblestone detachment, cornea 8.9	PS	SWW	6 months	IIH6 negative	biopsy at 1 month dystrophic, CK 2,927 U/I	MRI and autopsy: hydrocephalus, agyria, cobblestone lissencephaly, deeded subcortical heterotopia, thin corpus callosum, brainsten hypoplasia, cerebellar hypoplasia	unilateral microphthalmia with cataract, optic nerve hypoplasia	Case #1001, Miami Brain and Tissue Bank for Developmental Disorders ^{6,7}
P7 WRI: cobblectone lissencephaly with partial pachygyria, hydrocephalus, unilateral congenital dystrophic, partial agenesis of corpus cultures. MRI: cobblectone lissencephaly with partial agenesis of corpus cultures. P7 WWS unknown IIH6 negative dystrophic, CK 6,126 U/I partial agenesis of corpus cultures. partial congenital	P6	SWW	3 months	IIH6 negative	dystrophic, CK 9,577 U/I	MR1 and autopsy: hydrocephalus, agyria/pachygyria, cobblestone lissencephaly, cerebellar hypoplasia	Peters' anomaly, retinal detachment, cornea dysplasia	8,9
oranisterii nypopiasia, cerebenar coouung hypoplasia	P7	SWW	unknown	IIH6 negative	dystrophic, CK 6,126 U/I	MRI: cobblestone lissencephaly with partial pacitygyria, hydrocephalus, partial agenesis of corpus callosum, brainstem hypoplasia, cerebellar hypoplasia	unilateral congenital cataract, focal corneal clouding	

Supplementary Table 2. Clinical characteristics of ISPD deficient WWS cases

Chromosome	Intervals targeted for sequencing (b37)	No. of families HBD/IBD at the interval	No. exons targeted
chr2	110,443,753-142,636,523	2	1,766
chr4	114,226,988-131,107,545	2	600
chr4	157,486,220-163,245,174	2	176
chr4	25,531,234-35,429,711	2	202
chr4	71,520,178-86,932,486	2	1,027
chr7	15,066,544-18,938,376	4	157
chr8	70,942,229-72,095,586	2	66
chr8	84,739,785-103,732,048	2	1,029
chr9	130,884,753-131,640,165	2	249
chr10	112,562,802-119,178,574	2	556
chr12	100,576,725-104,925,884	2	415
chr16	3,301,360-6,149,092	2	498
chr20	4,195,591-7,256,082	2	154
chr20	53,875,809-57,914,046	2	218

Supplementary Table 3. List of all targeted intervals for sequencing and the number of families that were HBD or IBD and the number of exons targeted at each interval are shown.

Number of		0	Process involved according to Gene Ontology		
Variants	Gene symbol	Gene name	Annotation Database		
	Kann	isoprenoid synthase domain			
4	ISPD	containing	isoprenoid biosynthetic process		
3	PABPC1	Polyadenylate-binding protein 1	RNA metabolic process		
		Low-density lipoprotein receptor-			
3	LKF1D	related protein 1B	protein transport, receptor-mediated endocytosis		
2	SCTR	secretin receptor	G-protein coupled receptor signaling pathway		
_		thrombospondin, type I, domain			
2	THSD7B	containing 7B	biological process unknown		
_		processing of precursor 1,			
2	POPI	ribonuclease P/MRP subunit	RNA processing		

Supplementary Table 4. Genes with multiple functional variants that PASSed the hard-filtration in the targeted sequencing data

primer	sequence	comment
7717	5'-ATGgaggccgggccgccgg-3'	forward primer, start ATG is capitalized
7718	5'- cta CAAGTCTTCTTCAGAAATAAGTTTTTGTTC gctagcccctgctatcagaagctgaccaatg-3'	reverse primer, myc-tag is capitalized, STOP codon is highlighted in bold

Supplementary Table 5. Primers for human ISPD cloning

а

			P1	P2	P3	P4	P5	P6	P7
SNV	No of variants	All	684	688	689	667	567	670	674
		Known	669	667	668	637	555	647	656
		$Novel^{\dagger}$	15	21	21	30	12	23	18
		dbSNP132_rate (%)	97.807	96.948	96.952	95.502	97.884	96.567	97.329
		Concordance_rate $(\%)^{\ddagger}$	99.701	99.550	99.551	99.686	99.640	99.845	99.695
	Het/Homo Ratio	All	1.581	1.520	1.487	1.027	1.054	1.680	1.832
		Known	1.525	1.443	1.412	0.942	1.026	1.609	1.756
		Novel	15.000	21.000	21.000	29.000	5.000	10.500	18.000
	Ti/Tv Ratio	All	3.329	2.909	2.915	3.018	3.050	2.941	2.965
		Known	3.344	2.947	2.953	3.057	3.081	2.969	2.952
		Novel	2.750	2.000	2.000	2.333	2.000	2.286	3.500
INDEL	No of variants	All	55	50	44	56	52	58	56
		Known	11	10	11	11	11	11	12
		Novel	44	40	33	45	41	47	44
		dbSNP132_rate (%)	0.200	0.200	0.250	0.196	0.212	0.190	0.214
	Het/Homo Ratio	All	1.500	0.923	0.760	0.867	0.529	1.148	1.154
		Known	0.833	0.667	0.571	0.833	0.833	0.833	2.000
		Novel	1.750	1.000	0.833	0.875	0.464	1.238	1.000

* known: dbSNP132 positions

† novel: not dbSNP132 positions

‡ concordance rate (%): the rate of the known SNPs with the same genotype as

in the dbSNP132

b

		P1	P2	P3	P4	P5	P6	P7
SNV	total	15	21	21	30	12	23	18
	missense	7	9	9	14	6	12	10
	nonsense	1	0	0	1	0	0	1
	splice-5	0	1	1	0	0	0	0
	splice-3	0	0	0	0	0	0	0
	Others*	7	11	11	15	6	11	7
INDEL	total	44	40	33	45	41	47	44
	frameshift	2	4	3	3	2	4	4
	coding	3	4	4	4	2	5	4
	others†	39	32	26	38	37	38	36

* others: SNPs found in the 1000 Genome database or dbSNP131 outside the

coding-region and coding-synonymous SNPs

† others: INDELs found in the 1000 Genome database or dbSNP131 or outside

the coding-region

Supplementary Table 6. Summary statistics of variant analyis

(a) Summary Statistics of the Variants Called and PASSed Filters

(b) Summary Statistics of the Novel Variants Called and PASSed Filters

References for Supplemental Information

- 1. Godfrey, C. *et al.* Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. *Brain : a journal of neurology* **130**, 2725-35 (2007).
- 2. Rodriguez-Concepcion, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. *Plant physiology* **130**, 1079-89 (2002).
- 3. Lommel, M. *et al.* Correlation of enzyme activity and clinical phenotype in POMT1associated dystroglycanopathies. *Neurology* **74**, 157-64 (2010).
- 4. Van Reeuwijk, J. *et al.* A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. *Clinical genetics* **78**, 275-81 (2010).
- 5. Clarke, N.F. *et al.* Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. *European journal of human genetics : EJHG* **19**, 452-7 (2011).
- 6. Satz, J.S. *et al.* Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **28**, 10567-75 (2008).
- 7. Kanoff, R.J. *et al.* Walker-Warburg syndrome: neurologic features and muscle membrane structure. *Pediatric neurology* **18**, 76-80 (1998).
- 8. Vajsar, J., Ackerley, C., Chitayat, D. & Becker, L.E. Basal lamina abnormality in the skeletal muscle of Walker-Warburg syndrome. *Pediatric neurology* **22**, 139-43 (2000).
- 9. Chitayat, D. *et al.* Prenatal diagnosis of retinal nonattachment in the Walker-Warburg syndrome. *American journal of medical genetics* **56**, 351-8 (1995).