#### High-fat Feeding Promotes Obesity via Insulin Receptor/PI3k-Dependent Inhibition of SF-1 VMH Neurons

Tim Klöckener<sup>1,2,3</sup>, Simon Hess<sup>2,4</sup>, Bengt F. Belgardt<sup>1,2,3</sup>, Lars Paeger<sup>2,4</sup>, Linda A. W. Verhagen<sup>1,2,3</sup>, Andreas Husch<sup>2,4</sup>, Jong-Woo Sohn<sup>5</sup>, Brigitte Hampel<sup>1,2,3</sup>, Harveen Dhillon<sup>6</sup>, Jeffrey M. Zigman<sup>5</sup>, Bradford B. Lowell<sup>6</sup>, Kevin W. Williams<sup>5</sup>, Joel K. Elmquist<sup>5</sup>, Tamas L. Horvath<sup>7</sup>, Peter Kloppenburg<sup>2,4</sup>, Jens C. Brüning<sup>1,2,3</sup>

#### **Supplementary Figure Legends**

Supplemetary Figure 1: Unaltered number of SF-1-expressing neurons in SF-1<sup> $\Delta$ IR</sup>-mice.

Total number of LacZ-positive SF-1 neurons in the VMH of SF-1<sup>LacZ</sup> (control) and SF-1<sup>LacZ: $\Delta$ IR-mice (n=8-10 mice per genotype).</sup>

Data represent the mean  $\pm$  S.E.M.

**Supplementary Figure 2:** Unaltered fertility and pituitary function in SF-1<sup>ΔIR</sup>-mice.

a) Average litter size of female control and SF-1<sup> $\Delta$ IR</sup>-mice (n=10-14 breedings per genotype).

b) Litter frequency of female control and SF-1<sup> $\Delta$ IR</sup>-mice (n=10-14 breedings per genotype).

c) Pituitary gland mRNA-expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), thyroid stimulating hormone (TSH) and growth hormone (GH) (n=8 per genotype).

d) Serum levels of free  $T_3$  in NCD and HFD-exposed control and SF-1<sup> $\Delta$ IR</sup>-mice at the age of 20 weeks (n=15 per genotype).

Data represent the mean  $\pm$  S.E.M.

**Supplementary Figure 3:** Food intake adjusted for body weight is unaltered in older  $SF-1^{\Delta IR}$ -mice.

Food intake of control and SF-1<sup> $\Delta$ IR</sup>-mice at the age of 12 to 13 weeks on HFD normalized to body weight (n>14 per genotype).

Data represent the mean  $\pm$  S.E.M.

**Supplementary Figure 4:** Unaltered glucose metabolism of control and SF- $1^{\Delta IR}$ -mice on NCD.

a) Blood glucose concentrations of random fed control and SF-1<sup> $\Delta$ IR</sup>-males on NCD at the age of 20 weeks (n>14 per genotype).

b) Serum insulin concentrations of male control and SF-1<sup> $\Delta$ IR</sup>-mice exposed to NCD at the age of 20 weeks (n>14 per genotype).

c) Insulin tolerance test of 14 weeks old male control and SF-1<sup> $\Delta$ IR</sup>-mice on NCD (n>14 per genotype).

d) Glucose tolerance test of 15 weeks old male control and SF-1<sup> $\Delta$ IR</sup>-mice on NCD (n>14 per genotype).

Data represent the mean  $\pm$  S.E.M.

#### **Supplementary Table Legends**

Supplementary Table 1: Electrophysiological responses of SF-1 VMH neurons.

Recordings were performed in genetically marked SF-1 neurons. Summarized are responses to application of either leptin or insulin. Note that recordings were performed throughout the VMH, while insulin responses depicted in Fig. 2 were performed in the mediobasal VMH, where insulin evoked clear PI3k activation, explaining the higher percentage of insulin-responsive cells there. Recordings were performed in 70 neurons before and after leptin stimulation and in another 38 neurons following insulin stimulation. Observed depolarization by leptin reached on average +5 mV and was usually reversible, while the hyperpolarization by leptin or insulin reached on average -7 mV and was usually irreversible.

**Supplementary Table 2:** Effect of sequential leptin and insulin application on firing properties of SF-1 VMH neurons.

Recordings were performed in genetically marked SF-1 neurons. Summarized are responses to sequential application leptin followed by insulin. Note that 3 out 21 neurons not responding to leptin hyperpolarized upon subsequent insulin treatment, while 2 neurons, which depolarized upon leptin treatment fail to respond to subsequent insulin incubation, indicating that 5/21 neurons tested in this paradigm exhibit segregated responses to leptin and insulin.

**Supplementary Table 3:** Effect of sequential insulin and leptin application on firing properties of SF-1 VMH neurons.

Recordings were performed in genetically marked SF-1 neurons. Summarized are responses to sequential application insulin followed by leptin. Note that out of 16 neurons not responding to insulin upon first incubation, 1 depolarized and 5 hyperpolarized upon subsequent leptin treatment, indicating that 6/16 neurons tested in this paradigm exhibit segregated responses to leptin and insulin.









# Klöckener et al. Supplementary Tables

| Та | bl | е | 1 |
|----|----|---|---|
|    |    | - |   |

|                | Leptin      | Insulin     |
|----------------|-------------|-------------|
| Depolarized    | 10 (13.3 %) | 0 (0 %)     |
| Hyperpolarized | 15 (20.0 %) | 5 (12.2 %)  |
| No response    | 50 (66.7 %) | 36 (87.8 %) |
| Total          | 75 (100 %)  | 41 (100 %)  |

#### Table 2

|         |                | Leptin 1 <sup>st</sup> |             |
|---------|----------------|------------------------|-------------|
|         |                | Depolarized            | No response |
| Insulin | Hyperpolarized | 0                      | 3           |
| -       | No response    | 2                      | 18          |
|         | Total          | 2                      | 21          |

### Table 3

|                           |                | Insulin 1 <sup>st</sup> |
|---------------------------|----------------|-------------------------|
|                           |                | No response             |
| Leptin<br>2 <sup>nd</sup> | Depolarized    | 1                       |
|                           | Hyperpolarized | 5                       |
|                           | No response    | 10                      |
|                           | Total          | 16                      |