Supplementary Materials and Methods

menB knockout in E. faecalis

All chemicals were purchased from Sigma unless otherwise stated. Restriction enzymes *Sall, PstI, XbaI, XmaI*, and T4 DNA ligase were purchased from New England Biolabs and Takara ExTaq DNA polymerase from Millipore. *Escherichia coli* TG1 electrocompetent and Sure2 super competent cells were purchased from Stratagene. The TA Cloning® Kit with pCR II vector was purchased from Invitrogen and DNA purification kits from Zymo Research.

DNA sequences for the *menB* gene encoding 1,4-dihydroxy-2-naphthoic acid synthase and flanking regions were obtained from the *Enterococcus faecalis* v583 genome (AE016830). Primers (menB1 and menB2) were designed for a 500 bp upstream segment (menBf1) that covered the start codon of *menB* with a *Sal*I site on the 5' end of menB1 and an *Xba*I site on the 5' end of menB2. Additional primers (menB3 and menB4) were designed for a downstream segment of 519 bp (menBf2) that also covered the stop codon of *menB* with a *Pst*I site on the upstream end of menB3 and an *Xma*I site on the downstream end of menB4. Gene fragments were designed to sandwich the chloramphenicol gene amplified using primers cat1 and cat2 with an *Xba*I restriction site on the upstream end and a *Pst*I restriction site on the downstream end.

Each segment was PCR amplified, cloned into the TA cloning vector, and transformed into TOP10F' competent cells (Invitrogen). Blue/white screening was used to pick clones containing the segments of interest. Clones containing the segments were harvested by ZyppyTM Plasmid Miniprep Kit (Zymo Research). Target segments were then digested from plasmids, gel purified, and ligated to each other to construct a double crossover cassette. The entire knockout cassette was amplified from the ligation mixture using the outermost flanking primers (menB1 and menB4) to produce a 1.75 kb PCR product. This product was then ligated into the TA cloning vector, transformed into Sure-2 competent cells, and clones selected. Plasmids containing the knockout cassette were harvested using the Plasmid Miniprep Kit (Zymo Research), digested with *Sal*I and *Xma*I, and gel purified. The purified knockout cassette was ligated into the transposon vector pG+host10 (a derivative of pG+host9) that had been previously digested with *Sal*I and *Xma*I.¹

The pG+host10::menBf1-cat-menbf2 knockout plasmid was electroporated into *E. coli* TG1, selected on LB with 400µg/ml erythromycin, and verified by PCR. Plasmid was purified by Plasmid Miniprep Kit and electroporated into *E. faecalis* OG1RF as described by Shepard and Gilmore.² Clones were selected at 28°C on brain-heart infusion (BHI) agar containing 500 µg/ml erythromycin. Clones were grown in BHI without antibiotics at 28°C for 5 hrs and then temperature shifted to 42°C overnight. Bacteria were subsequently plated on BHI agar containing 25 µg/ml chloramphenicol and grown at 37°C overnight. Chloramphenicol resistant colonies were replica-plated at 37°C on BHI-erythromycin and BHI-chloramphenicol agar. Colonies resistant to chloramphenicol and sensitive to erythromycin were chosen as *menB* knockouts and verified by PCR and DNA sequencing. One confirmed knockout strain with *menB* disrupted by insertion of *cat* was designated WY84. Deficiency in extracellular superoxide production by WY84 was confirmed using the cytochrome *c* reduction assay as previously described.³

Nuclear magnetic resonance

One-dimensional ¹H chemical shifts were collected using a Varian VNMRS-400 MHz spectrometer with 16 transients and 1 sec recycle delay. ¹³C shifts were obtained by indirect methods. Assignments were made based on gCOSY, HSQC, and gHMBC experiments.

Concentration of 4-HNE was determined by quantitative ¹H NMR using 0.8 µM benzene as an internal reference for integration ratios.⁴ The spectrum was collected with 32 scans, 90 degree pulse width, and recycle delay of 300 seconds to ensure total relaxation between scans. The experiment was repeated 5 times. Each spectrum was carefully phased and a baseline correction employed prior to integration to improve accuracy. Spectra were collected at 21°C and all pulse sequences were performed using Varian VNMRJ2.2c software.

Fluorescence-activated cell sorting and immunofluorescence

Fluorescence-activated cell sorting (FACS) was used to determine ploidy, γ H2AX staining, and cell cycle arrest as previously described.⁵ For microtubule staining, cells were stained for tubulin using 1:100 diluted α/β tubulin antibody (Cell Signaling Technology) and Fluor[®] 647 goat anti-rabbit IgG (1:1,000 dilution, Invitrogen) as a secondary antibody. Images were collected using laser scanning confocal microscopy (Leica Microsystems) and analyzed using Volocity software (Improvision).

Western blotting

Protein extraction and Western blotting were performed as described.⁵ Anti-phospho-stathmin (Ser^{16}) rabbit monoclonal and anti- α/β -tubulin rabbit polyclonal antibodies were purchased from Cell Signaling Technology. Anti-Gsta4 purified MaxPab mouse polyclonal antibody was purchased from Abnova and anti-4-HNE mouse monoclonal antibody from R&D Systems.

Cytotoxicity assay

4-HNE cytotoxicity was determined using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay (Sigma) as previously described.⁶

Immunohistochemistry

Immunohistochemical staining was performed as previously described.⁵ For 4-HNE staining, slides were blocked with 5% normal goat serum and incubated with rabbit anti-4-HNE antiserum (Alpha Diagnostic) and HRP-goat anti-rabbit IgG conjugate (Zymed). For immunocytochemical staining, RAW264.7 cells were seeded onto chamber slides (BD Biosciences) and incubated at 37 °C overnight. Cells were treated with *E. faecalis* OG1RF, *E. faecalis* WY84, *E. coli* DH5α, or sham at 37°C for 2 hrs. Following fixation with 4% formalin and acetone, slides were processed and stained as previously described.⁵ Slides were developed with DAB Enhanced liquid substrate and counterstained with Mayer's hematoxylin solution (Sigma).

References

- Maguin E, Prévost H, Ehrlich SD, Gruss A. Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 1996;178:931-935.
- Shepard BD, Gilmore MS. Electroporation and efficient transformation of *Enterococcus faecalis* grown in high concentrations of glycine. In: Nickoloff JA, ed. Methods in Molecular Biology: Electroporation and Electroprofusion of Microorganisms Protocols. Volume 47. Totowa, NJ: Humana Press, Inc., 1995:217-226.
- 3. Huycke MM, Joyce W, Wack MF. Augmented production of extracellular superoxide production by blood isolates of *Enterococcus faecalis*. J Infect Dis 1996;173:743-746.

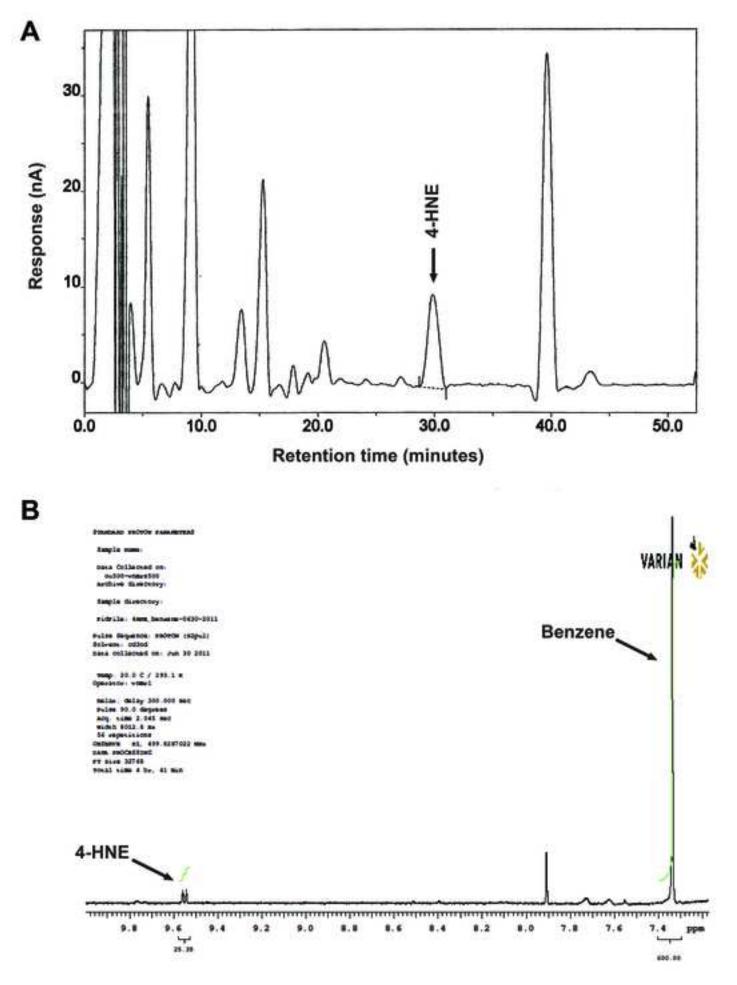
- 4. Pauli GF, Jaki BU, Lankin DC. Quantitative ¹H NMR: development and potential of a method for natural products analysis. J Nat Prod 2005;68:133-49.
- 5. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008;68:9909-17.
- Supino R. MTT Assays. In: O'Hare S, Atterwill CK, eds. In Vitro Toxicity Testing Protocols. Volume 43. Totowa, NJ: Humana Press, Inc., 1995:137-149.

Supplementary Figure legends

Figure S1. HPLC and NMR assays for 4-HNE. *A*, Chromatogram of HPLC showing 4-HNE peak at 30 min. *B*, Concentration of pure 4-HNE from *E. faecalis*-infected macrophages is determined by NMR using benzene as an internal control.

Figure S2. Survival curve for 4-HNE. Cells were exposed to serially diluted 4-HNE for 1 hr and incubated in fresh medium for 18 hrs at 37°C (HCT116) or 33°C (YAMC). Cell viability was determined by the MTT assay and survival rate calculated by untreated control as 100% survival. A, HCT116 cells; B, YAMC cells.

Figure S3. Survival curve for *trans***-2-nonenal.** HCT116 (*circle*) and YAMC (*square*) cells were exposed to serially diluted *trans*-2-nonenal for 1 hr and incubated in fresh medium for 18 hrs at 37°C (HCT116) or 33°C (YAMC). Cell viability was determined by the MTT assay.


Figure S4. 4-HNE does not generate detectable 4-HNE-tubulin adducts in HCT116 and YAMC cells. *A*, western blot showing global modification of proteins in HCT116 cells treated with 4-HNE at 2 to 5 μ M. *B* and *C*, immunoprecipitation of 4-HNE modified tubulins using α/β -tubulin antibody. Western blot shows positive staining for tubulin monomers in all samples (*A*), but negative staining for 4-HNE antibody (*B*).

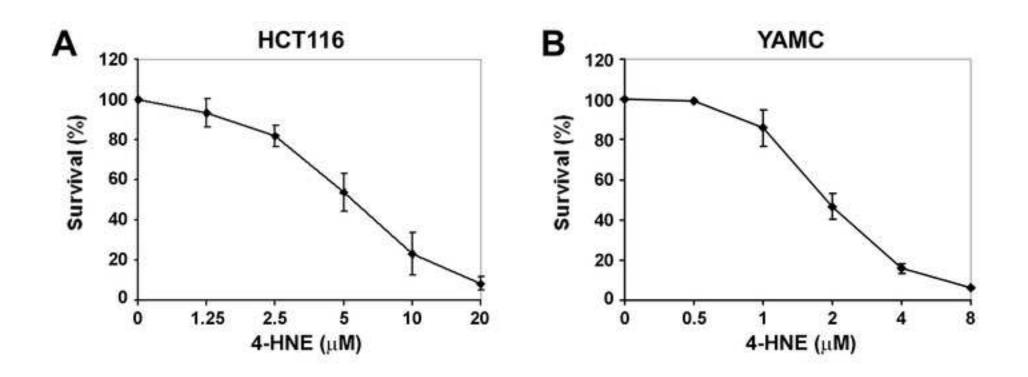

Figure S5. 4-HNE activates stathmin in YAMC cells. *A*, Western blots show 19 and 20 kDa isoforms of p-stathmin (Ser¹⁶) in untreated YAMC cells, YAMC cells treated with 4-HNE and nocodazole. *B*, After normalizing to β -actin, the 19 kDa Ser¹⁶-phosphorylated isoform of p-stathmin (Ser¹⁶) clearly decreased 0.5–6 hrs following 4-HNE treatment. Nocodazole, a spindle poison, produces a similar effect. *C*, Reductions in the 20 kDa isoform of stathmin were also evident in YAMC cells at early and late time points following exposure to nocodazole and 4-HNE.

Figure S6. Inactivation of *Gsta4* attenuates 4-HNE decay. 4-HNE at 1 μ M was added to medium for Gsta4-silenced YAMC (*triangle*), wild-type YAMC (*open circle*), and YAMC transfected with a negative control plasmid (*closed square*) cells. 4-HNE was extracted from supernatants and cells over 60 min and measured by electrochemical detection.

Figure S7. 4-HNE does not generate tubulin dimers in HCT116 cells. Purified bovine brain tubulin (Cytoskeleton Inc.) was treated with 4-HNE for 30 min at 37°C. Western blotting using α/β -tubulin antibody shows tubulin dimers generated by 4-HNE (110 kDa) in a dose dependent

manner for pure tubulin (*left lanes*). Marked dimers are not noted in cell lysates from 4-HNE-treated HCT116 cells (*right lanes*).

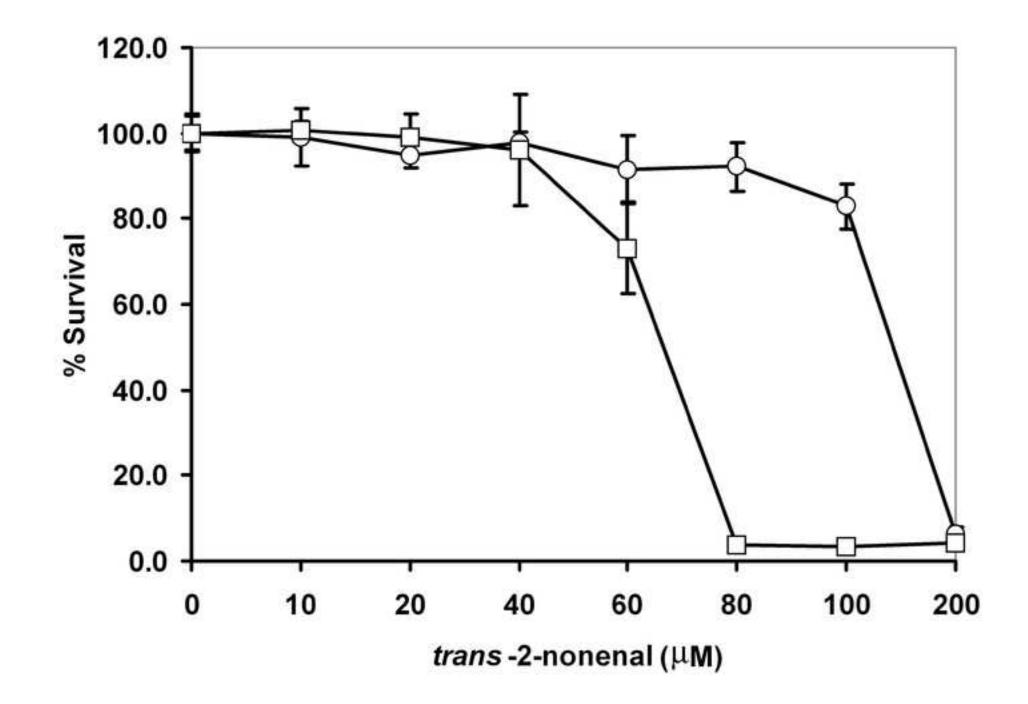
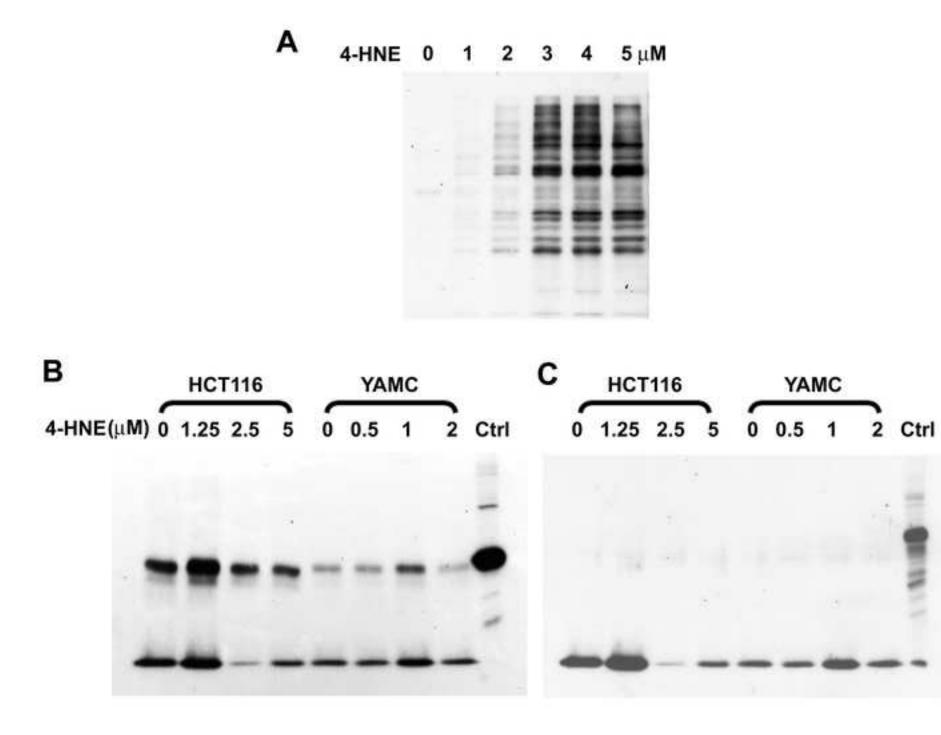
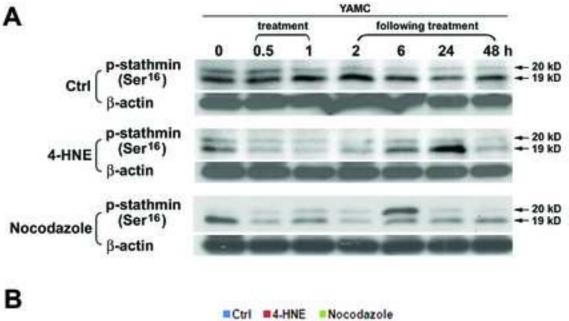
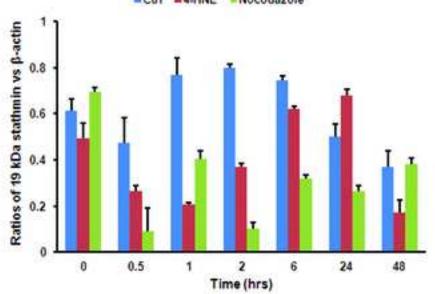
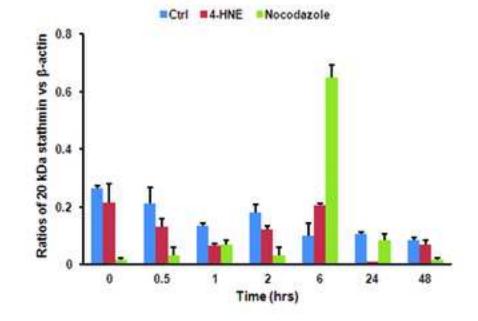
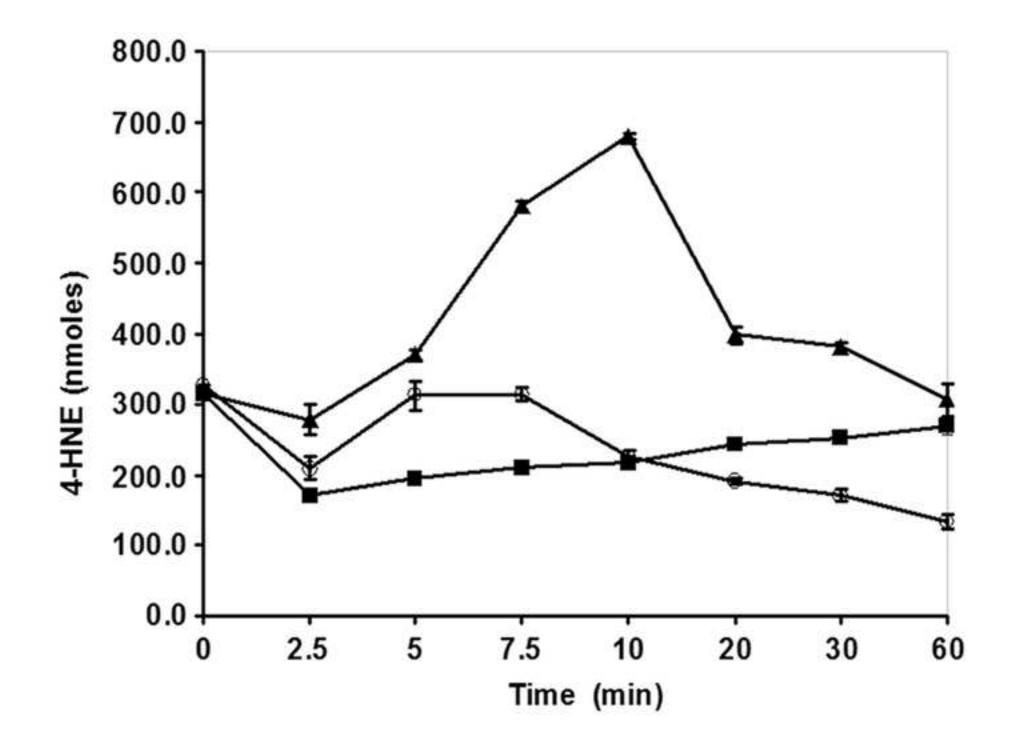


Figure S4 Click here to download high resolution image


Figure S5 Click here to download high resolution image

