
Reconciliation using Duplication, Transfer, and Loss

SUPPLEMENTARY MATERIAL
For the paper titled “Efficient Algorithms for the Reconciliation
Problem with Gene Duplication, Horizontal Transfer, and Loss”,
by Mukul S. Bansal, Eric J. Alm, and Manolis Kellis

S.1 Proofs
Proof of Theorem 3.1

PROOF. We will show that Algorithm U-Reconcile correctly
solves the U-MPR problem on G and S in O(mn) time.

Correctness: It suffices to show that the value c(g, s), for each
g ∈ V (G) and s ∈ V (S), is computed correctly. Specifically, we
will show that the values in(g, s), inAlt(g, s), out(g, s), cΣ(g, s),
c∆(g, s), and cΘ(g, s) are computed correctly for each g and s.

For each g ∈ Le(G), consider the values in(g, s), inAlt(g, s), and
c(g, s), for any s ∈ V (S). Observe that each of these values has
been assigned correctly (in accordance with Definition 2.1) after the
execution of the ‘for’ loop of lines 3 through 4. These values form
the base case of our inductive argument.

Now let g ∈ I(G) and {g′, g′′} = ChG(g). Let us assume that
the values in(g′, x), in(g′′, x), inAlt(g′, x), inAlt(g′′, x), c(g′, x)
and c(g′′, x) are computed correctly for each x ∈ V (S). Note that,
given the values inAlt(g′, x) and inAlt(g′′, x), the values out(g′, x)
and out(g′′, x) are also correctly computed, for each x ∈ V (S), in
the ‘for’ loop of steps 23 through 25. We will show that the values
in(g, s), inAlt(g, s), and c(g, s), for any s ∈ V (S) are then compu-
ted correctly as well. Observe that the values cΣ(g, s), c∆(g, s), and
cΘ(g, s) are computed in accordance with Definitions 2.1 and 2.2
(in steps 9 through 11 if s is a leaf node, and in steps 17 through 19
otherwise), based on the values of in(·, ·), out(·, ·), and c(·, ·) com-
puted previously. Thus, the value of c(g, s) is computed correctly
as well (steps 12 and 20), which, in turn, implies that the values of
in(g, s) and inAlt(g, s) are also correctly assigned (steps 13, 21 and
14, 22 respectively).

Induction completes the proof.
Complexity: We analyze the complexity of Algorithm U-

Reconcile step-by-step. The ‘for’ loops from steps 1 through 4
require O(mn) time. Steps 7 through 22 each require O(1) time,
and are each executed O(mn) times (through the ‘for’ loops at
lines 5 and 6), yielding a total time complexity of O(mn) for these
steps. Similarly, steps 24 though 25 each require O(1) per execution
and are executed a total of O(mn) time (through the ‘for’ loops at
lines 5 and 23). Finally, step 26 requires O(n) time. The total time
complexity of Algorithm U-Reconcile is thus O(mn).

Proof of Theorem 3.2

PROOF. We will show that Algorithm D-Reconcile solves the D-
MPR problem in O(mn logn) time.

Correctness: Since the values in(·, ·), cΣ(·, ·), c∆(·, ·), and c(·, ·)
are assigned in exactly the same way as in Algorithm U-Reconcile,
it suffices to show that each cΘ(·, ·) is computed correctly (in part
(a) of step 19). Consider the ‘for’ loop in steps 8 through 16. The
purpose of that loop is simply to assign, for each x ∈ Ch(g) and
each time zone i, the edges Best(x, i) and secondBest(x, i). It is not
hard to see that these edges are assigned correctly; the purpose of
the slightly round-about approach employed by us to achieve this
is only to maintain the efficiency of the algorithm. These computed

Best(x, i) and secondBest(x, i) edges are then added to a dynamic
range minimum query data structure Φx, indexed by i.

Now, to show that part (a) of step 19 computes the value of
cΘ(g, s) correctly, it suffices to show that the edges (pa(u), u)
and (pa(v), v), assigned in step 18, are such that (i) u is that
node from V (S) for which in(g′, u) has minimum value, sub-
ject to the constraints that u ̸= s and (pa(u), u) has at least one
time zone in common with (pa(s), s), and (ii) v is that node from
V (S) for which in(g′′, v) has minimum value, subject to the con-
straints that v ̸= s and (pa(v), v) has at least one time zone in
common with (pa(s), s). Observe that one of the edges Best(g′, i)
and secondBest(g′, i), for t(pa(s)) ≤ i ≤ t(s) − 1, must be
such an edge (pa(u), u), and one of the edges Best(g′′, i) and
secondBest(g′′, i), for t(pa(s)) ≤ i ≤ t(s) − 1, must be such
an edge (pa(v), v). In other words, such (pa(u), u) and pa(v), v)
can be found among the edges stored in the data structures Φg′ and
Φg′′ between (and including) the indexes t(pa(s)) and t(s)− 1. In
light of this observation, it is easy to verify that a call to Procedure
bestReceiver with parameters (g, g′, s) returns exactly such an edge
(pa(u), u), and when the parameters are (g, g′′, s) exactly such
an edge (pa(v), v). Thus, the value of each cΘ(·, ·) is computed
correctly by Algorithm D-reconcile.

Complexity: The structure of Algorithm D-Reconcile is the same
as the structure of Algorithm U-Reconcile except for the preproces-
sing step, the addition of the ‘for’ loop in steps 8 through 16, and the
use of the procedure bestReceiver in step 18. For the preprocessing
step, computing the end(i) and begin(i) sets, for each time zone i,
can be accomplished in O(n) time by a single post order traversal
of S.

We now analyze the complexity of the ‘for’ loop from steps 8
through 16.

We now analyze the complexity of the ‘for’ loop from steps 8
through 16. Creating an empty binomial heap in Step 9 requires
O(1) time. Steps 10 through 11 require O(n logn) time, since each
of these steps requires at most O(n) insertions or queries on the
binomial heap. In the ‘for’ loop of steps 12 through 14, we update
the binomial heap by deleting and inserting at most a total of O(n)
edges (since each edge of S is inserted or deleted at most once),
and query the binomial heap a total of O(k) times (which is O(n))
to set the Best values and perform O(k) deletions, reinsertions, and
queries to set the secondBest values. Thus, the total time complexity
of this ‘for’ loop is O(n logn). Step 15 involves adding O(k) values
to a dynamic range minimum query data structure, which requires
a total of O(k log k), i.e., O(n logn) time. Since the ‘for’ loop of
steps 8 through 16 only executes steps 10 through 15 two times, the
total time complexity of that ‘for’ loop is O(n logn). Now, since
this ‘for’ loop itself is executed a total of O(m) times, the total
contribution of steps 8 through 16 to the complexity of Algorithm
D-Reconcile is O(mn logn)

Finally, we analyze the time complexity of step 16. Observe that
the total contribution of step 18 to the time complexity of Algorithm
D-Reconcile is just the total time spent by the algorithm inside pro-
cedure bestReceiver. Observe also that Procedure bestReceiver is
called exactly once each for each triplet (g, x, s), for any g ∈ I(G),
x ∈ Ch(g), and s ∈ V (S) \ rt(S). For any fixed g, x, and s, the
time complexity of Procedure bestReceiver depends on the number
of times that the dynamic range minimum query data structure Φx

is queried: And Φx is only queried again if the edge returned by
the current query is the same as the edge (pa(s), s). Note, however,

1



Bansal et al

that for each index in Φ(x), there is only one edge from V (S) that
could cause Φx to be queried again. Thus, for any fixed g and x,
as s varies, there are at most O(k) repeated queries overall (since
there are O(k) indexes in Φx. This implies that, for any fixed g and
x, and over all s ∈ V (S) \ rt(S), the total time spent in Proce-
dure bestReceiver is simply the time required for O(n+ k) queries
and O(n+ k) insertions and deletions on Φx, which is O(n logn).
Since there are O(m) ways to choose g, and for any given g only
two ways to choose x, the total time spent spent inside Procedure
bestReceiver is O(mn logn).

Thus, the total time complexity of Algorithm D-Reconcile is
O(mn logn).

Proof of Theorem 3.3

PROOF. We will show that Algorithm Reconcile correctly
solves the MPR problem with distance-dependent transfer costs in
O(mn2) time.

Correctness: Observe that, by updating Steps 11 and 19 of Algo-
rithm U-Reconcile, Algorithm Reconcile correctly assigns the value
cΘ(g, s), for any g ∈ I(G) and s ∈ V (S), with respect to the given
time constraints and distance-dependent transfer cost function. The
remainder of the argument is analogous to that of the correctness of
Algorithm U-Reconcile in the proof of Theorem 3.1.

Complexity: Consider the two modifications to Algorithm U-
Reconcile and how they affect its complexity: Modification (i)
has no impact on the time complexity. And, since each PΘ(s, x)
value can be computed in constant time, modification (ii) increa-
ses the time complexity of computing each cΘ(·, ·) only to O(n).
This increases the overall time complexity of the algorithm to
O(mn2).

S.2 Handling more complex transfer scenarios
Transfers where the host copy is lost. As we illustrate in Figure 2,
the existing reconciliation model is unable to correctly handle cases
where there is a transfer from a species that then loses its copy
of that gene. This is simply because there is no node in the gene
tree that can represent that transfer. To the best of our knowledge,
the only existing approach that can detect such transfers is the one
from Doyon et al. (2010), which solves the tcDTL-reconciliation
problem on fully dated trees in O(mn2) time. As we show now,
each of our Algorithms U-Reconcile, D-Reconcile, and Reconcile
can be extended to detect such transfers without any increase in
their time complexities. The idea is as follows: We explicitly create
a fifth type of event, denoted by TL, (besides speciations, transfers,
duplications, and losses) that represents the case where there is a
transfer with corresponding host-copy loss. The cost of a TL event
is denoted by PTL. We add a dummy node on each edge in the gene
tree. These dummy nodes have one parent and one child and repre-
sent potential TL events. Note that each internal node of G has two
dummy nodes as its children. Given any dummy node g and any
s ∈ V (S), we define cTL(g, s) to be the cost of an optimal reco-
nciliation of G(g) with S such that g is mapped to s and g ∈ TL.

Consider Algorithm U-Reconcile; the algorithm proceeds as usual at
the regular (non-dummy) nodes of the gene tree. When at a dummy
node g, the algorithm does the following: The dummy node g inh-
erits the values of cΣ(g, ·), c∆(g, ·), cΘ(g, ·) from its unique child
(which must be a regular node), and in addition computes the value
cTL(g, s) to be PTL + out(g′, s), where g′ denotes the unique child
of g. At each dummy node g, the value of c(g, s) is then defined to
be min{cΣ(g, s), c∆(g, s), cΘ(g, s), cTL(g, s)}. Note that the cost
of a TL event should be set to be at least PΘ + Ploss to prevent
overuse of TL events. These simple changes enable the algorithm
to detect and handle TL events. It is not hard to show that by
employing the dummy-node approach described above, each of the
Algorithms U-Reconcile, D-Reconcile, and Reconcile can be modi-
fied to detect and account for TL events without any increase in their
time complexities. Further technical details are omitted for brevity.

� � � � �

�

� � �

�

� � �� � � �� � � � � ��

Fig. 2. Transfers where host copy is lost. Consider the gene tree G sho-
wing the evolutionary history of some gene in the species in S. G can be
obtained from S by two transfers and one loss: Namely, a transfer from spe-
cies E to species B, and then a transfer from species F to species E that
replaces the copy of that gene in E. This evolutionary history is, however,
undetectable under the current reconciliation model, and the current MPR
requires three transfers and a loss (assuming all events have the same cost)

Transfers from unsampled or extinct species lineages. Incom-
plete taxon sampling can confound the accuracy of DTL-
reconciliation due to transfers from the unsampled lineages to the
sampled ones. Even with complete taxon sampling, the species, both
extant and ancestral, that can be seen on a species tree represent only
those species that have surviving descendant species. This is only a
fraction of the total number of species that have ever existed. It is
likely that now-extinct species lineages would have participated in
horizontal gene transfer events with species that do have surviving
descendant species. In conventional HGT detection methods, tran-
sfers from unsampled or extinct lineages, sometimes called phantom
transfers, can manifest themselves as transfers going forward in
time or as transfers going from an ancestor to a descendant. Such
phantom transfers can be detected and handled by augmenting the
species tree with additional edges (representing unsampled or exti-
nct lineages) and then employing a strategy similar to the one used
above for handling transfers where the host copy is lost.

2


