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1 Model of tumor growth and evolution of

resistance

Here we present a mathematical model for the evolution of resistance to
target cancer therapy in tumors with density-dependent growth. Our model
is a two-type density dependent branching process. (See Athreya and Ney
[S1] for background on branching processes.)

We consider two cancer cell types: sensitive and resistant. The numbers
of sensitive and resistant cells present at any given time t are represented
by the random variables Xs(t) and Xr(t), respectively. The total number of
cells is denoted X(t) = Xs(t) +Xr(t).
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We initially suppose that, prior to treatment, sensitive and resistant cells
have the same division and death rates. (We will relax this assumption in
Section 5 to include the possibility that resistance comes with an associated
fitness cost.) Each cell divides stochastically at rate r/(1 + ηX) per unit
time, where the constant η quantifies the extent of density dependence. Cell
death also occurs stochastically, at rate d per cell.

From these division and death rates, we calculate the that the tumor
has an overall carrying capacity of N = η−1(r/d − 1) cells. At carrying
capacity, the expected size of the tumor remains constant, though stochastic
fluctuations will occur.

We suppose that the tumor is initiated by a single sensitive cell. Mutation
from sensitive to resistant type occurs at rate u, so that with each division
of a sensitive cell, there is probability u that one of the daughter cells will
be resistant. We disregard the possibility of back-mutation from resistant to
sensitive cells.

When treatment begins, the division rate of sensitive cells is reduced to
r′/(1 + ηX) with r′ ≤ r, and their death rate is increased to d′ ≥ d, with
r′ < d′. The resistant cells are unaffected by treatment.

2 Three-phase approximation

To mathematically analyze this model, we approximate the process of tumor
growth, evolution, and treatment by three phases:

• Expansion: The tumor grows exponentially. Both types divide at rate
r and die at rate d. This phase lasts until the tumor reaches its carrying
capacity N .

• Steady state: The tumor has reached carrying capacity. The division
and death rates of both types are equal to d. The tumor is in steady
state for time T .

• Treatment: When treatment is occurring, sensitive types have division
rate r′ and death rate d′, while resistant types have birth rate r and
death rate d.

We approximate each of these phases as a density-independent branching
process, with different birth and death rates for each phase, as described
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above. This allows us to use established results in calculating the probability
of treatment success. This three-phase scheme is an approximation to the
model, because it does not include the transitions between the first and sec-
ond or second and third phases. During these transitions, the tumor is near
but not at carrying capacity, and thus the birth rates take on intermediate
values between r and d.

We now investigate these three phases in further detail, highlighting pre-
vious results that we will use in our analysis.

2.1 Expansion

For our density-independent branching process approximation to the expan-
sion phase, Iwasa et al. [S2] derived the following generating function for the
number of resistant cells at the termination of this process:

G1(ξ) ≡ E
[
ξXr
]

= exp

(
−Nu 1− ξ

d/r − ξ
log

(
1− ξ

1− d/r

))
. (S1)

2.2 Steady state

In our approximation of the steady state phase, the branching process is
critical with birth rate d (or r in the alternate convention). The generating
function for such a branching process is [S1]:

G2(ξ, t) ≡ E
[
ξXr(t)

]
=
dt(1− ξ) + ξ

dt(1− ξ) + 1
, (S2)

In the alternate convention in which density dependence affects death, d
is replaced by r in the above expression for G2(ξ, t).

2.3 Treatment

According to our approximation of the treatment phase, each resistant lineage
which is present at the beginning of the treatment phase will go extinct during
treatment with probability d/r. Thus if there are x resistant cells present at
the start of treatment, then the probability that all the lineages of these cells
will go extinct during treatment is (d/r)x.

If no resistant cells are present when treatment starts, the probability that
resistant cells will arise during and survive through treatment was calculated
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by Michor et al. [S3], using a model that coincides with our approximation
to the treatment phase. This probability is given by

P3 = exp

(
−Nur − d

r

r′

d′ − r′

)
. (S3)

3 Analytical calculation of treatment success

probability

We are interested in the probability of treatment success. This is equiva-
lent to the probability that no ultimately successful lineages of resistant cells
arise—where “ultimately successful” means that the lineage survives through
the entire process, including treatment. Since resistant cells can arise dur-
ing any of the three phases, we express the overall probability of treatment
success as

P = P1P2P3, (S4)

where P1, P2 and P3 represent the probabilities that no ultimately successful
lineages of resistant cells arise during the expansion, steady state, and treat-
ment phases, respectively. P3 is given by (S3). We calculate P1 and P2 in
the following subsections.

3.1 Lineages arising during expansion

To calculate P1, we first consider a single resistant lineage that is present
at the start of the steady state phase. The number of cells present in this
lineage at the end of steady state is the random variable Xr(T ), which has
generating function G2(ξ, T ) = E

[
ξXr(T )

]
. For a particular value of Xr(T ),

the lineage will be extinct by the end of the treatment phase with probability
(d/r)Xr(T ) (see Section 2.3). So overall, the probability that the lineage is
extinct by the end of treatment phase is

E
[
(d/r)Xr(T )

]
= G2(d/r, T ) =

dT (r − d) + d

dT (r − d) + r
.

To find the probability that no lineages arising in stationary phase survive
through treatment phase, we plug this value into the generating function
G1—defined in (S1)—corresponding to the expansion phase:

P1 = G1

(
G2(d/r, T )

)
. (S5)
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3.2 Lineages arising during steady state

To calulate P2, we consider a single lineage that arises at time t0 < T . By
the reasoning used in the previous section, the probability that this lineage
is extinct by the end of treatment phase can be expressed as

G2(d/r, T − t0) = E
[
(d/r)Xr(T−t0)

]
=
d(T − t0)(r − d) + d

d(T − t0)(r − d) + r
.

Since new resistant lineages arise at rate dNu, the probability that an
ultimately successful lineage arises during the time interval [t, t+ dt) is

dNu

(
1− d(T − t)(r − d) + d

d(T − t)(r − d) + r

)
dt.

Thus the probability that no ultimately successful lineage arises during steady
state can be obtained as

P3 = exp

(
−
∫ T

0

dNu

(
1− d(T − t)(r − d) + d

d(T − t)(r − d) + r

)
dt

)
=

(
1 +

d

r
(r − d)T

)−Nu
.

(S6)

3.3 Overall probability of treatment success

Combining (S4), (S3), (S5), and (S6), we obtain the overall probability of
treatment success as

P =P1P2P3

=G1

(
G2(d/r, T )

)
×
(

1 +
d

r
(r − d)T

)−Nu
× exp

(
−Nur − d

r

r′

d′ − r′

)
.

(S7)

We note that, as stated in the main text, P1, P2 and P3—and therefore
the overall probability P—can all be expressed in the form M−Nu, where M
does not depend on N or u. The same is true in the case that resistance
mutations carry a fitness cost (Section 5).
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4 Limiting cases

4.1 The case T = 0

T = 0 represents the case that treatment begins while the tumor is still
growing exponentially. In this case, N represents the number of tumor cells
present at the start of treatment, rather than the carrying capacity. This case
was analyzed by Komarova and Wodarz [S4,S5], and the results we present
here coincide with theirs.

For T = 0, we calculate

P1 = G1

(
G2(d/r, 0)

)
= lim

ξ→d/r
G1(ξ) = e−Nu.

P2 is clearly equal to 1 for T = 0 (that is, since the steady state phase is
bypassed in the case T = 0, resistant lineages cannot arise during steady
state). The overall probability P of resistance in the case T = 0 is equal to

P = P1P3 = exp

[
−Nu

(
1 +

r − d
r

r′

d′ − r′

)]
.

We note that if the condition

r′

r

r − d
d′ − r′

< 1

is satisfied, then resistance leading to treatment failure is more likely to arise
during growth than during treatment (P1 < P3). Since r′ ≤ r, the condition
d′−r′ > r−d (that is, the decline of sensitive cells during treatment is faster
than their growth during expansion) is sufficient to imply P1 < P3.

4.2 The limit T →∞
4.2.1 Resistance arising during growth

As T → ∞, G2(d/r, T ) → 1, and hence P1 = G1

(
G2(d/r, T )

)
→ G1(1) = 1.

This expresses the fact that, as time spent in steady state goes to infinity,
the probability that a resistant lineage will arise during growth and survive
through treatment goes to zero.
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4.2.2 Resistance arising during steady state

For the probability that no resistant types arise during steady state and
survive through treatment, we have:

lim
T→∞

P2 = lim
T→∞

(
1 +

d

r
(r − d)T

)−Nu
= 0.

Thus the overall treatment success probability P = P1P2P3 also goes to zero
as T →∞.

5 The case of deleterious resistant types

The above analysis assumes that resistant cells are selectively neutral in
the absence of treatment. However, treatment resistance may be costly;
for example, it may expend energy that could otherwise be put towards
reproduction. It is therefore important to consider deleterious resistance
mutations.

For this section we suppose that resistant types reproduce at rate r̂/(1 +
ηX), while sensitive types divide at rate r/(1 + ηX). The death rate is d for
both types. We suppose resistant types are less fit than sensitive types, but
still fit enough to grow in the absence of density-dependent constraints; that
is, d < r̂ < r.

For the treatment phase we suppose, as above, that the resistant types
are unaffected, while the sensitive types have their division rate reduced to
r′/(1+ηX), with r′ ≤ r and their death rate increased to d′ ≥ d, with r′ < d′.

The mathematical analysis of this case proceeds along the same lines as
the neutral case. We again use a three-phase approximation and calculate
the probability of treatment success as P = P1P2P3, where P1, P2, and P3

have the same meanings as above. The only difference lies in the generating
functions that are used.

5.1 Generating functions

5.1.1 Expansion

In the expansion phase, For the expansion phase, we have from [S2]

G1(ξ) ≡ E
[
ξXr
]

= exp

[
− Nu

1− d/r

(
1−

∫ 1

0

gNx(ξ) dx

)]
,
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where gNx(ξ) is the generating function for a resistant lineage that arises
when there are Nx sensitive cells:

gNx(ξ) =
(ξ − 1) d/r̂ x−α − (ξ − d/r̂)

(ξ − 1)x−α − (ξ − d/r̂)
,

and

α =
r̂ − d
r − d

is the ratio of resistant cell growth rate to sensitive cell growth rate. The gen-
erating function G1(ξ) can also be expressed in terms of the hypergeometric
function F2 1:

G1(ξ) = exp

[
−Nuαr

d
F2 1

(
1, α−1, 1 + α−1,

r̂ − dξ
d(1− ξ)

)]
. (S8)

5.1.2 Steady state

For the equilibrium phase, we have r/(1 + ηX) = d. Thus the reproduction
rate of resistant types is

r̂/(1 + ηX) = r̂ d/r.

The generating function for resistant cells in the steady state phase is there-
fore [S1]:

G2(ξ, t) ≡ E
[
ξXr(t)

]
=

(ξ − 1) r
r̂

exp
(
d(r̂−r)
r

t
)
− (ξ − r

r̂
)

(ξ − 1) exp
(
d(r̂−r)
r

t
)
− (ξ − r

r̂
)
. (S9)

5.1.3 Treatment

In the treatment phase, resistant types divide at rate r̂ and die at rate d.
The extinction probability of each lineage is therefore d/r̂.

5.2 Treatment success probability

5.2.1 Lineages arising during expansion

Following the logic of Section 3.1, the probability that no ultimately success-
ful lineage arises during expansion is

P1 = G1

(
G2(d/r̂, T )

)
, (S10)

using the formulas (S8) and (S9).
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5.2.2 Lineages arising during steady state

Following the logic of Section 3.2, the probability that no ultimately success-
ful lineage arises during steady state can be obtained as

P2 = exp

(
−
∫ T

0

dNu
(
1−G2(d/r̂, T − t)

)
dt

)

=

r − d− (r̂ − d) exp
(
−dT (r−r̂)

r

)
r − r̂

−Nur/r̂ . (S11)

5.2.3 Lineages arising during treatment

The probability that no successful resistant lineages arise during treatment
is given by [S3]:

P3 = exp

(
−Nur̂ − d

r̂

r′

d′ − r′

)
. (S12)

5.2.4 Overall treatment success probability

We calculate the overall treatment success probability P = P1P2P3, using
(S10), (S11), and (S12), as

P = G1

(
G2(d/r̂, T )

)
×

r − d− (r̂ − d) exp
(
−dT (r−r̂)

r

)
r − r̂

−Nur/r̂

× exp

(
−Nur̂ − d

r̂

r′

d′ − r′

)
.

5.3 Limiting cases

5.3.1 The case T = 0

For T = 0 we have G2(d/r̂, 0) = d/r̂, thus

P1 = exp

[
−Nuαr

d
F2 1

(
1, α−1, 1 + α−1,

r̂ − d2/r̂
d(1− d/r̂)

)]
= exp

[
Nu

r

d

(
1 +

r̂

d

)−α−1

β1+r̂/d(α
−1, 0)

]
,
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where β is the incomplete Euler beta-function:

βx(a, b) =

∫ z

0

ya−1

1− yb−1
dy

β1+r̂/d(α
−1, 0) =

∫ 1+r̂/d

0

y(r−r̂)/(r̂−d)

1− y
dy.

As explained in Section 4.1, P2 = 1 for T = 0. P3 is again given by (S12).

5.3.2 The limit T →∞

For the limit T →∞ we have P1 = 1 as explained in Section 4.2.1. For the
steady state phase we calculate

P2 = lim
T→∞

r − d− (r̂ − d) exp
(
−dT (r−r̂)

r

)
r − r̂

−Nur/r̂

=

(
r − d
r − r̂

)−Nur/r̂
.

Formula (S12) for P3 is again unchanged.

6 Length of treatment

In this section we calculate the amount of time needed for treatment to
eradicate all sensitive cells in a tumor. We approximate the behavior of
sensitive cells during the treatment phase with a subcritical branching process
with division rate r′ and death rate d′. In this process, a single cell will die
by time t with probability [S1]

q(t) =
−d′ + d′e(d

′−r′)t

−r′ + d′e(d′−r′)t
.

If there are N sensitive cells in a tumor, they will die out by time t with
probability

Q(t) =

(
−d′ + d′e(d

′−r′)t

−r′ + d′e(d′−r′)t

)N
.
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Thus the time needed for all sensitive cells to be eradicated by treatment in
a fraction p of tumors that had N cells when treatment started is

t =
1

d′ − r′
log

(
−d′ + r′p1/N

−d′ + d′p1/N

)
.

7 Simulations

We employ exact computer simulations of the density-dependent branching
process defined in Section 1 of the Appendix in order to test the accuracy of
our analytical calculations. In simulations, we assume that the population
has reached steady state when the total number of cells in the tumor is 90%
of the carrying capacity. In Fig. 1 we show the excellent agreement between
the formula for overall probability of treatment (S7) success and simulations.
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Figure S1: Comparison of formula for overall probability of treatment success
(S7) and simulations. Parameter values are r = 0.25, d = d′ = 0.24, r′ = 0.1,
u = 10−5. Simulation results are averaged over 10, 000 runs.
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