

Figure S1 Major developmental steps of the *P. anserina* life cycle and features that have been assessed in the MAPK mutants.

Figure S2 Lack of appressorium-like structures in the $\Delta PaMpk2$ mutants. Mycelia of the indicated strains were grown on cellophane overlaying M2 medium. Mycelium was observed after two days of growth at different focal plans. **1**, hyphae running parallel to the cellophane are observed. **4**, corresponds to a plan 4 mm below that of **1**; hyphae had reoriented in both wild type and the $\Delta PaMpk2$ mutants and made bulging contacts with cellophane. **10**, i.e., 10 µm below plan 1, needle like hyphae (arrows) have breached cellophane in wild type but not in mutants.

Figure S3 DAB and NBT staining. Assays were performed on three-day old mycelia.

Figure S4 Hyphal Interference in the MAPK mutants. Cell death and Oxidative Burst were revealed by the accumulation of Trypan blue and precipitation of DAB, respectively, at the confrontation between *P. anserina* and *Penicillium chrysogenum*. For each strain, two mycelia of *P. anserina* were inoculated with three neighbouring *P. chrysogenum* thalli. After three days of growth, the mycelia of the two competing species confront for at least 24 hours at which time the assays begin. Dead cells and oxidative burst (arrows) are clearly visible on wild type (WT) and the $\Delta PaMpk3$ mutants, while they are reduced on the $\Delta PaMpk2$ mutants and completely abolished in the $\Delta PaMpk1$ ones. Note that as previously described (4) the $\Delta PaMpk1$ mutant exhibit numerous dead cell all over the thallus.

Figure S5 Fertility rescue in heterokaryons. $\Delta PaMpk2 \ leu1-1/\Delta mat \ lys2-1$ heterokaryons were crossed with wild type (WT) or $\Delta PaMpk2$ mutants. When wild type was the female parent (top left), numerous normal perithecia matured. When $\Delta PaMpk2$ mutants were the female parent, no perithecium was differentiated (Top right). When the heterokaryons were the female parent (bottom), a few normal-looking ascospore-producing perithecia (arrows) were obtained among numerous abnormal looking ones in both types of cross.

Figure S6 Phosphorylation of PaMpk1 and PaMpk2 in ascospores. Ascospores non-induced (NI) and induced (I) for germination were assessed for the phosphorylation of PaMpk1 and PaMpk2. Ascospores were obtained from homozygous wild-type, $\Delta PaNox2$ and $\Delta PaPls1$ crosses. Protein extract from $\Delta PaMpk1$ and $\Delta PaMpk2$ mycelia were loaded as control.

Figure S7 Localization of PaMpk1 in apical hyphae. Hyphae from the growing edge of cultures of the indicated strains carrying the PaMpk1-GFP transgene presents only diffuse fluorescence.

Table S1 The full set of MAP kinases in P. anserina

	Mpk1-like	Fus3/Kss1-like	Hog1-like			
	PaASK1	PaTLK2	PaHOK3			
МАРККК	(Pa_5_9370)	(Pa_7_8030)	(Pa_1_12080)			
	1832 aa	926 aa	1360 aa			
	0 EST	3 EST	6 EST			
	PaMKK1	PaMKK2	PaMKK3			
MADKK	(Pa_7_10270)	(Pa_2_820)	(Pa_1_15320)			
MAPKK	527 aa	416 aa	681 aa			
	1 EST	1 EST	10 EST			
	PaMpk1	PaMpk2	PaMpk3			
MADK	(Pa_2_13340)	(Pa_5_5680)	(Pa_1_23930)			
MAPK	413 aa	353 aa	357 aa			
	17 EST	9 EST	9 EST			

The table gives the coding sequences (CDS) identifier as defined by the *P. anserina* genome project (http://podospora.igmors.u-psud.fr), the size of the proteins and the number of Expressed Sequence Tag (EST) found in the collection.

Table S2 Primers

fuelenation	TTATTTOOOOTOOTO
tus3gaucne	TIATTIGGCGCTCGTTG
fus3G-sphl	AT <u>GCATGC</u> GTTGGATTAGGGAGAGTGGATT
fus3D-notl	AT <u>GCGGCCGC</u> CCGTTTGTTGGAAGTGGCTTG
fus3droit	GCTGTCGAGGCTTTCACTAA
MKK2A	GGCCCGCAAGGTTAGTCT
MKK2B	CGGTGCATGATGTGGTGT
TLK2-1F	AACGGTGACACAGCATCGTTAGTAGAGAGG
Mk_TLK2-2R	ctatttaacgaccctgccctgaaccgGGCGGAGCCTTGGTTTTCTCTTTG
TLK2_Mk-2F	CAAAGAGAAAACCAAGGCTCCGCCcggttcagggcagggtcgttaaatag
TLK2_Mk-3R	CAAGCACGGCTCTCCCAAGAATCAATTATcatcgaactggatctcaacagcggtaag
Mk_TLK2-3F	cttaccgctgttgagatccagttcgatgATAATTGATTCTTGGGAGAGCCGTGCTTG
TLK2-4R	GTTCTAGCGCAAACGCAAGTCAATTTATCC
MKK2_GF_CH1_for	GTGAGCTCATCAACGACATCGCTGACGACTTTGTCGGTACGTC
MKK2_GF_CH1_rev	GACGTACCGACAAAGTCGTCAGCGATGTCGTTGATGAGCTCAC
Mpk2_for	CGGCGACGTAACTCGACCT
Mpk2_rev	GCAGGCGAGCATGGTTAT
HOG1AML	<u>GTCGAC</u> ATGTGTGGTTCGGGCAGT
HOG1AMR	<u>GGGCCC</u> TGTGGCGGGGAAGATAGA
HOG1VML	<u>GCGGCCGC</u> CCGATATGGGTGGTCCTG
HOG1VMR	GTCGACAAAGCTGTTGACGCTTTGC
M3K2GF	GATATCTCCATGGTTTTTGGAGCTG
M3K2GR	TCTAGA TGTGTGGTTGAGGTTGCAC
M3K2DF	<u>CTCGAG</u> GTGCGAGCAACAACAGC
M3K2DR	GATATCTCGTGTGCAATCATCCTATCA
HOK3GF	GATATCTCATTCCTTGAAACAGC
HOK3GR	TCTAGA TCGATCGTATGCCCACTG
HOK3DF	CTCGAGCGAAATGGATACCCCTTGG
HOK3DR	GATATCTCATTCACCACCAACAACAA

	WT	∆PaMpk 1	PaMKK1 (IDC ⁴⁰⁴)	PaASK1 (IDC ¹¹⁸)	∆PaMpk2	∆PaMKK 2	∆PaTLK2	∆PaMpk3	∆PaMKK 3	∆PaHOK 3	Δ1 Δ2	Δ1 Δ3	Δ2 Δ3	Δ1 Δ2 Δ3
thermo-sensitivity at 37°C ^a	100%	80%	80%	85%	85%	85%	80%	100%	100%	100%	100%	80%	70%	100%
cryo-sensitivity at 11°C ^a	100%	90%	90%	90%	80%	80%	80%	100%	100%	100%	80%	80%	80%	75%
neutral osmo-sensitivity (sorbitol 200g/l) ^a	100%	95%	95%	95%	95%	95%	85%	0%	0%	0%	10%	0%	0%	0%
neutral osmo-sensitivity (saccharose 200g/l) ^a	100%	95%	95%	95%	75%	75%	90%	50%	50%	50%	95%	30%	0%	0%
ionic sensitivity (KCl 0.5M) ^a	100%	80%	80%	80%	90%	90%	75%	0%	0%	0%	35%	0%	0%	0%
ionic sensitivity (NaCl 0.5M) ^a	100%	80%	80%	80%	95%	95%	75%	0%	0%	0%	70%	0%	0%	0%
ionic sensitivity (CaCl2 0.5M) ^a	100%	85%	85%	85%	30%	30%	85%	0%	0%	0%	30%	0%	0%	0%
0.5 mM EGTA ^a	100%	90%	90%	90%	80%	80%	90%	95%	95%	95%	110%	90%	75%	80%
0.04% H2O2 sensitivity ^a	100%	140%	160%	160%	180%	180%	180%	160%	160%	170%	170%	160%	175%	0%
10-4 M TBY sensitivity ^a	100%	105%	105%	100%	110%	105%	75%	100%	100%	105%	140%	95%	120%	115%
5. 10-5 M Menadione sensitivity ^a	100%	80%	85%	95%	115%	100%	95%	115%	110%	120%	125%	0%	105%	110%
50 μ g/ml calcofluor sensitivity ^a	100%	90%	90%	100%	185%	175%	175%	120%	100%	120%	135%	85%	160%	140%
5mM caffeine sensitivity ^a	100%	110%	110%	115%	115%	115%	115%	100%	100%	100%	115%	115%	115%	130%

Table S3 Stress resistance phenotypes associated with the PaMpk1, PaMpk2 and PaMpk3 MAPK modules inactivation

0,1 μg/ml nikkomycin sensitivity	100%	75%	75%	75%	130%	130%	115%	100%	100%	100%	130%	75%	130%	100%
5 μ g/ml lprodione ^a	100%	105%	105%	105%	180%	160%	105%	100%	100%	100%	160%	100%	170%	190%
0.01 μg/ml Fluoxonil ^a	100%	40%	70%	105%	220%	135%	50%	185%	195%	200%	165%	180%	220%	225%

^a the table gives the percentage of growth speed as compared to wild type (100%)

Table S4 Efficiency of cellulose degradation as compared to wild type

	3d	5d	7d
∆PaMpk1	73%	77%	93%
∆РаМКК1	41%	69%	91%
∆PaASK1	73%	76%	108%
∆PaMpk2	36%	41%	52%
∆РаМКК2	14%	39%	46%
∆PaTLK2	42%	37%	46%
∆PaMpk3	86%	96%	97%
∆РаМКК3	100%	98%	102%
∆РаНОК3	88%	99%	99%
∆PaMpk1 ∆PaMpk2	20%	47%	70%
∆PaMpk1 ∆PaMpk3	47%	76%	88%
∆PaMpk2 ∆PaMpk3	7%	40%	57%
∆PaMpk1 ∆PaMpk2 ∆PaMpk3	16%	42%	69%

The table gives the loss of dry weight of Whatman paper pieces incubated for 3, 5 and 7 days of *P. anserina* mutants as compared to wild type.