
File S1: Supporting Information

I. NEUTRAL HAPLOTYPE SPECTRUM

The haplotype spectrum expected in a haploid neutral Fisher-Wright model without recombination can be calculated
from the Ewens sampling formula (Ewens, 1972). Ewens showed that the probability of a sample of size n is
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where aj is the number of allele classes that are sampled j times and Θ(k) = Θ(Θ + 1) · · · (Θ + k− 1) with Θ = 2Nu.
The expectation of ak is therefore given by
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where the last two approximate inequalities are accurate if k � n and kΘ � n, respectively. Hence the expected

number ic of allele classes with more than nc members is roughly Θ
∑nΘ−1

k=nc
k−1 ≈ Θ(log n− log Θnc), where cutting

off the sum at k = nΘ−1 approximately accounts for the exponential. With this approximation, the icth abundant
allele class is expected to contain

nc ≈
n

Θ
exp(−ic/Θ) (3)

copies of the allele. A more accurate expression of the spectrum is obtained by determining the nc such that ic =∑
k>nc
〈ak〉, using the exact expression given above. This numerical solution for the haplotype spectrum is plotted in

Figure 2B of the main text.

II. THE DISTRIBUTION OF HAPLOTYPE FREQUENCIES

In the main text, we calculated the distribution of the establishment time of the ith haplotype and the frequency of
the corresponding haplotype. Here, we show how the joint distribution of all seeding times and the resulting frequency
spectrum can be calculated assuming that the novel haplotypes are rare and evolve independently, which is justified
if they constitute a small share of the total population, i.e., if u/s� 1. In this case, the probability that k haplotypes
i = 1, . . . , k are present in frequencies xi is given by

P (x1, . . . , xk|t) =

∫ t

0

∏
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dti
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P (xi|ti, t)P (t1 . . . , tk|t) , (4)

where P (xi|ti, t) is the probability that a haplotype has frequency xi at time t given it became established at time ti.
The distribution of establishment times P (t1 . . . , tk|t) is given by

P (t1 . . . , tk|t) =
1
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where α(t′) = 2suNx(t′) is the rate of establishing novel adaptive haplotypes (main text Equation (1) and below).
Note that the ti defined in Equation (5) are not ordered. They are distributed according to a Poisson point process
with density α(t′). Assuming that established novel haplotypes increase in frequency logistically according to Equation
(5) of the main text, we have

P (xi|ti, t) = δ

(
xi −

e(s−u)(t−ti)

2Ns+ est

)
, (6)
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where δ(x) is the Dirac δ-function (the stochastic analog is calculated below, see also (Desai and Fisher, 2007)).
Substituting P (xi|ti, t) into Equation (4) and integrating over ti, we obtain
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1

k!
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1
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with ti = t − (s − u)−1 log(xi(2Ns − est)). Haplotypes that are common after the sweep are most likely seeded
early during the sweep. Furthermore, we showed in Equation (5) of the main text that their relative frequencies stay
approximately constant during the amplification phase. Hence we can determine the joint distribution of frequencies
at early times t � s−1 log 2Ns while α(t) ≈ 2usest is still exponential. After substituting the ti and simplifying, we
find

P (x1, . . . , xk|t) ≈
e−

u
s e
st
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2usesti
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x
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where we dropped factors independent of xi which ensure normalization. A very similar result was found in (Desai

and Fisher, 2007). At large t, the form of the prefactor e−
u
s e
st

changes due to the saturation of the allele frequency
at 1, but the distribution of the frequencies of the haplotypes that were seeded early during the sweep remains of this
form until the spectrum is eroded by genetic drift.

The haplotype spectrum therefore decays with a power 2+u/s, which is consistent with the power 1−u/s obtained

for the cumulative or rank spectrum (integrating x
−2−u/s
i yields x

−1−u/s
i ). More importantly, this result tells us

that the distribution of haplotype frequencies conditional on the number of haplotypes observed is approximately
independent of u/s if u � s. Hence, given that a sweep occurred, all information about the strength of the sweep
is contained in the number of haplotypes and the precise values of their frequencies do not contain any additional
information if u � s. However, whenever there are deviations from the assumptions made here, the haplotype
frequencies will contain additional information.

III. STOCHASTIC DERIVATION OF THE HAPLOTYPE SPECTRUM

The dynamics of rare haplotypes are strongly influenced by random genetic drift and we have to ascertain the
deterministic arguments made in the main text by a more careful stochastic calculation. While hard in general, an
approximate analytic calculation of the frequency spectrum of rare haplotypes is feasible in our case for the following
reasons: (i) The dynamics of a beneficial allele are essentially deterministic since it is much more frequent than
haplotypes that arise through secondary mutations. (ii) The dynamics of rare haplotypes can be described by a linear
branching process since they are always a small fraction of the total population.

As already done in Equation (4), we decompose the distribution of haplotype frequencies into the distribution
P (t1, . . . , tk|t) of times when the novel haplotypes arise and probability P (n, t|t0) that a haplotype is present in n
copies at time t, given it arose at time t0. We will derive P (n, t|t0) first and consider the spectrum due to the
superposition of several independent seeding events below.

A. Distribution of rare variants arising in a logistic sweep

To model the stochastic dynamics of rare haplotypes, we use a continuous time branching process in which indi-
viduals produce identical copies of themselves with rate 1 + g(t) and die with rate 1, i.e., the unit of time is chosen to
be the generation time. The average number of offspring of a given individual in this model is 1 + g(t). Hence, g(t)
is the growth rate of the haplotype carrying the beneficial allele. In the case of a sweep, we have

g(t) = s(1− x(t))− u , (9)

where the first term accounts for selection (x(t) is the frequency of the beneficial allele) and the second term accounts
for mutations that change the state of the haplotype. The dynamics of P (n, t|t0) are described by the forward Master
equation

∂tP (n, t|t0) = (1 + g(t))(n− 1)P (n− 1, t|t0) + (n+ 1)P (n+ 1, t|t0)− (2 + g(t))nP (n, t|t0) , (10)

which accounts for replication (first term) and death (second term). To solve for P (n, t|t0), it is useful to consider
the generating function G(λ, t|t0) =

∑
λnP (n, t|t0), which obeys the equation

∂tG(λ, t|t0) =
[
−(2 + g(t))λ+ (1 + g(t))λ2 + 1

]
∂λG(λ, t|t0) (11)
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with initial condition G(λ, t0|t0) = λ. This equation can be solved via the method of characteristics, with the result

G(λ, t|t0) ≈ 1− 1− λ

e
−

∫ t
t0
dt′g(t′)

+ (1− λ)
∫ t
t0
dt′e

−
∫ t′
t0
dt′′g(t′′)

, (12)

where we have used 1+g(t) ≈ 1 along the way. The latter is a good approximation if selection is weak in one generation
and amounts to neglecting terms of order s2. We will now substitute the explicit expression for g(t), where it will be
convenient to parametrize the frequency of the beneficial allele as x(t) = (1 + es(τ−t))−1 with τ = s−1 log 2Ns. Using
this form of g(t), we find for the generating function

G(λ, t|t0) = 1− s̃(1− λ)(1 + e−s(t0−τ))e−u(t−t0)

s̃+ s̃e−s(t−τ) + (1− λ)
[
e−s(t0−τ)−u(t−t0) − e−s(t−τ) + s̃u−1(1− e−u(t−t0))

] (13)

where s̃ = s− u. Any haplotype that is abundant enough to be sampled with high probability most likely originated
in the early phase of the sweep (t0 � τ), which allows for the approximation 1+e−s(t0−τ) ≈ e−s(t0−τ)(1+O(n/(sN)))
where n is the sample size. Furthermore, we will typically observe the spectrum at times t � τ when the sweep is
almost complete. Hence we can approximate 1+e−s(t−τ) ≈ 1+xWT ≈ 1 where xWT is the frequency of the deleterious
wild type allele at the time of sampling. Using these simplifications, we obtain

G(λ, t|t0) ≈ 1− (1− λ)e−s(t0−τ)−u(t−t0)

1 + (1− λ)(s̃−1e−s(t0−τ)−u(t−t0) + u−1(1− e−u(t−t0)))
(14)

This expression is straightforwardly expanded into a geometric series in λ whose coefficients are P (n, t|t0). For large
n, one finds

P (n, t|t0) ≈ e−s(t0−τ)−u(t−t0)

n̂2
e−n/n̂ where n̂ =

e−s(t0−τ)−u(t−t0)

s− u
+

1− e−u(t−t0)

u
, (15)

with relative corrections being on the order of n̂−1. The quantity n̂ is the mean copy number of the haplotype
conditional on non-extinction, and the two terms contributing to n̂ have a straightforward interpretation: The first
term is the contribution of selection, which amplifies the haplotype before the fixation of the beneficial allele. The
second term is the contribution of random genetic drift, which evaluates simply to t− t0 in the limit of u(t− t0)� 1.
The latter is the analog of the well known fact that a non-extinct neutral allele in a neutral Moran process is on
average present in n copies after n generations. The expression for n̂ exhibits a crossover from an early regime where
selection dominates n̂ to a random drift dominated regime at large t. In the limit u(t− t0)� 1, we have

n̂(t) ≈

{
(s− u)−1es(τ−t0) s(t− t0)� es(τ−t0)

(t− t0) s(t− t0)� es(τ−t0)
(16)

This crossover will inform us below about how long the contribution of random drift can be neglected when applying
our estimator of the strength of the selective sweep.

B. The haplotype frequency spectrum

Having calculated the copy number distribution of a haplotype that originated at time t0, we now have to determine
the distribution of seeding times and calculate the resulting spectrum of haplotype frequencies. New haplotypes that
contain the beneficial allele are produced at rate

γ(t) = Nux(t) =
Nu

1 + e−s(t−τ)
, (17)

where, as before, x(t) is the frequency of the sweeping allele. Note that this differs from the rate of establishment of
novel variants by a factor s, which will reemerge from the stochastic calculation. The deterministic approximation
for γ(t) is valid if it is unlikely that new variants are seeded before establishment of the founding variant, which
requires s � u (see Desai and Fisher (2007)). Since novel haplotypes are seeded and evolve independently to a
good approximation, the number of haplotypes present in n copies at time t is Poisson distributed with mean

Q(n, t) =

∫ t

0

dt0 γ(t0)P (n, t|t0) , (18)
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Due to the exponential nature of P (n, t|t0), it is convenient to sum Q(n, t) over n > nc and calculate the expected
number of haplotypes with copy numbers greater than nc. The sum is well approximated by the integral W (nc, t) =∫
nc
dnQ(n, t), and we have

W (nc, t) = Nu

∫ ∞
nc

dn

∫ t

0

dt0x(t0)P (n, t|t0)

= Nu

∫ t

0

dt0
e−s(t0−τ)−u(t−t0)

n̂(1 + e−s(t0−τ))
e−nc/n̂ ≈ Nu

∫ t

0

dt0
e−u(t−t0)

n̂
e−nc/n̂ ,

(19)

where the last approximation assumes that novel haplotypes are seeded while the beneficial allele is still expanding
exponentially, i.e., e−s(t0−τ) � 1.

It does not seem possible to evaluate the integral over t0 in Equation (19) analytically. However, the integral is
dominated by contributions from a well defined time interval and can be evaluated perturbatively. For a very large
population where drift is negligible, and for s� u, this integral simplifies to

W (nc, t) ≈ Nu
∫ t

0

dt0e
s(t0−τ)−snces(t0−τ) , (20)

which is very sharply cutoff for s(t0 − τ)� − log snc. Hence we can send the upper integration boundary to infinity
without loss of accuracy and evaluate this integral exactly. One finds W (nc, t) ≈ Nu/(snc). The contribution to this
integral come from a narrow peak of width s−1 and height Nue−1/nc. Genetic drift and mutation predominantly
change only this height and width, leaving the shape of the integral approximately invariant. Hence we can evaluate
this integral by calculating where the integral peaks and how wide this peak is (Laplace’s method).

Including the correction due to drift and finite s/u term corrections, the integrand peaks when nc ≈ n̂, which
translates into s̃(τ − t∗) ≈ log(s(nc − t+ t∗)) as opposed to s(τ − t∗) ≈ log snc without the corrections. The second
derivative of the logarithm of the integrand is approximately given approximately by

1

n̂2

(
dn̂

dt0

)2

≈ s2 (n̂−∆t)2

n̂2
, (21)

where ∆t = t − t∗ is the age of the haplotypes. Hence the peak dominating the integral becomes wider by a factor
n̂

n̂−∆t . With these corrections to the “height” and the “width” of the integrand, we obtain the approximate expression

W (nc, t) ≈
Nue−ut

s(nc −∆t)

(
N

nc

)u/s
(22)

for the integral. This expression is accurate as long as snc � s(t−τ)− log(snc) and ut� 1. The age of the haplotype
evaluates approximately to ∆t = t− τ + s−1 log(snc), which is of order τ . The additional factor (N/nc)

u/s accounts
for the additional time the older haplotypes have been degraded by mutations, while the nc − ∆t accounts for the
contribution of drift to the frequency of the haplotypes.

After the sweep, the frequency of the most common haplotype is x0 = e−ut and the expected number of haplotypes
above frequency xc is given by

W (xc, t) ≈
u

s

[
x0

(xc −∆t/N)

]1+u/s

. (23)

This result tells us that the mean number of haplotypes with frequencies greater than xc is approximately linear
in u/s and decreases with xc approximately as x−1

c . Furthermore, the expected number of haplotypes above xc is
increasing with time, since rare haplotypes increase in frequency due to random drift.

Given that we observe ic haplotypes at frequencies higher then xc, we can use Equation (23) to estimate s/u:

s

u
≈ 1

ic

[
x0

(xc −∆t/N)

]1+icxc/x0

, (24)

This equation differs from Equation (9) of the main text by a reduction of xc due to random drift, which has been
ignored in the simple deterministic derivation given in the main text. This reduction allows us to correct for the
effects of genetic drift as long as drift is not to strong. Obviously, the correction fails as ∆t approaches Nxc.

Equation (24) informs us about the regimes where the proposed methods to estimate the selection coefficient is
likely to work. Random genetic drift will degrade the signature of the sweep for haplotype frequencies smaller than
∆t/N . Since the time needed for completion of the sweep is on the order of (logNs)/s, we require Nsxc > logNs.
Since xc ≈ u/(sic) is itself small, we need Ns� ic logNs for the method to work. The breakdown of the method is
clearly seen in Figure 3 of the main text once Ns falls below 100.
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IV. PRUNING RECOMBINANT HAPLOTYPES

Haplotypes that arise by mutation from the founding haplotype differ at exactly one position from the founding
haplotype, while haplotypes that result from a recombination event with a member of the diverse ancestral population
typically differ at several positions. Furthermore, haplotypes that are mutants of mutants will differ at two positions
from the founding haplotype. In the main text, we argued that one can restrict the haplotype spectrum to those
haplotypes that differ only at a single site from the founding haplotype, thereby removing most recombinant haplotypes
and mutants of mutants. Here, we show that frequency spectrum of such a restricted set of haplotypes differs slightly
from that of all haplotypes.

As before, the frequency of the beneficial allele will typically follow Equation (1) of the main text. The frequency of
the founding haplotype, however, will remain below this frequency due to loss through recombination and mutation.

x0(t) =
es̃t

2Ns+ est
, (25)

where we have abbreviated the initial growth rate of a haplotype by s̃ = s − u − r. Mutations on this haplotype
establish with rate α(t) = 2us̃Nx0(t). Haplotypes that establish at time ti then typically follow a frequency trajectory

xi(t) =
es̃(t−ti)

2Ns̃+ est
. (26)

The most likely seeding time of the ith haplotype is given by

ti =
1

s̃
log

si

u
. (27)

Hence we obtain for the ratios of haplotype frequencies at times when the beneficial allele is near fixation

xi(t)

x0(t)
= e−s̃ti =

u

si
. (28)

This differs from Equation (7) of the main text in that the ratio is proportional to i−1, rather than i−1+u/s. This
difference is due to the fact that here haplotypes grow with the same rate as the rate at which they are seeded. In
the previous case where all haplotypes are considered, haplotypes grow with rate s− u− r, while the seeding rate is
proportional to the frequency of the beneficial allele which grows with rate s.
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Figure S 1 Estimating selection strength in presence of recombination. This figure is the analog of Fig 4 of the main text
with a ten-fold reduced number of segregating sites in the initial samples, i.e., lower ancestral diversity. The estimates are very
similar, showing that the ancestral diversity has no impact on the accuracy of the estimation as long as recombination events
almost always give rise to unique haplotypes that differ from previous haplotypes at more than 1 site.
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Figure S 2 Comparison of the accuracy of our estimator to the accuracy of estimates obtained from the program sweepfinder

(Nielsen et al., 2005). Haplotype samples around a selective sweep occurring in the middle of the locus were simulated with
the program msms (Ewing and Hermisson, 2010). The population size used was N = 105 and samples were taken when the
adaptive allele had reached frequency 0.99 in the population. Panel A: Mean and variance of estimates obtained from the
program sweepfinder when applied to samples of depth 100 for a locus of size 2s/ρ as a function of different levels of ancestral
diversity. Note that the length of the simulated locus should provide ample surrounding neutral sequence for sweepfinder,
given that the dip in diversity is expected to be only of size 0.1s/ρ. Panel B: Mean and variance of the estimates from our
estimator (Equation 9 in the main manuscript) when applied to samples of depth 1000 for a locus of size 0.1s/(µ + ρ) as a
function of different mutation rates. Analogously to Figure 3 in the main manuscript we used a cutoff of ic = 5 for the analysis.
Recombination rate was always ρ = 10−8. Sweepfinder performs well only if the ancestral diversity is in the range 0.01 and
selection coefficients exceed s = 0.001. Our method, in contrast, obtains reliable estimates regardless of the ancestral diversity
and also for weaker selection coefficients. Note that the two methods were applied to different data sets (deep population
samples of a short locus for our estimator vs. a longer locus at only moderate coverage for sweepfinder). The total amount of
sequence provided to either method, however, was comparable.
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