
Additional Background 

Individuals are predisposed to complex diseases by both genetic variation and 

environmental influences [1] and they are frequently comorbid, such that individuals with a 

certain complex disease may be at elevated risk for other complex diseases. For example, 

patients with bipolar disorder are at risk for substance use disorders [2], patients with 

diabetes are at risk for hypertension [3], and alcohol dependent individuals show high rates 

of nicotine dependence[4].  In all of these cases, we have evidence that the comorbid 

diseases are both influenced by genetic variation [1, 5, 6], and the population is over-

represented for the comorbidity [2, 3], consistent with the existence of one or more 

pleiotropic genetic influences common to both diseases.    

 

One approach to GWA in comorbidity defines participants in a single study as being 

affected if they exhibit both disease phenotypes and as unaffected if they exhibit neither 

disease phenotype. This approach may be effective [4], though it limits sample size because 

many potential study participants are expected to have one or the other of the disease 

phenotypes. Since these individuals would be neither affected nor unaffected, they would 

not be included in the analysis. Another approach is to combine raw data from studies on 

related phenotypes, then calculate the appropriate association statistics [7, 8]. This can 

create a problem if the phenotype definitions are not identical.  For example, one study may 

consider participants as being affected using a restrictive diagnosis of bipolar I disorder, 

while another study may consider participants as being affected based on a less restrictive 

diagnosis of either bipolar I and bipolar II disorder, a related but not identical phenotype. 

This problem also presents itself when applying Fisher meta-analysis [9], which combines 

p-values from studies that are independent tests of the same hypothesis.  Also, with respect 



to independence, multiple longitudinal studies are ongoing (e.g. Women’s Health Initiative, 

Framingham) and in each study, data are being gathered on multiple phenotypes. Results of 

single disease GWA studies have shown promise in these applications [10] but 

comorbidities are expected to be found in each of these populations [11, 12], as they are in 

the general population. Since multiple phenotypes are being assessed in a single population, 

using standard Fisher meta-analysis would violate the assumption of independence. 

Assumptions 

The Rank Product (RP) and modified RP (modRP) methods 

According to Breitling, et al., derivation of the null distribution of RP statistics depends on 

relatively mild assumptions [13]: “(1) that relevant expression changes affect only a minority of 

genes, (2) measurements are independent between replicate arrays, (3) most changes are 

independent of each other, and (4) measurement variance is about equal for all genes.” Our 

modifications account for the aspects of GWA studies that do not meet the above assumptions.  

Translating Breitling’s assumptions for application of the RP method to GWA, we assume: (1) a 

minority of SNPs are associated with the comorbid phenotype, (2) association evidence is 

independent between phenotypes, (3) most association evidence is independent between SNPs, 

and (4) measurement variance is about equal for all SNPs. With respect to (1), prior to running 

modRP, we check for a concentration of association evidence in the top N SNPs, where N is 

determined by the size of the input dataset. If a minority of SNPs are associated with the 

comorbid phenotype, they should be at the top of the list and their ranks should be similar (all 

relatively low), so we expect to see higher correlation in ranks for the SNPs at the top of the list 

than at the bottom of the list. With respect to assumption (2), under the null assumption of no 

association the observed ranks are random, so the association measures are independent across 



phenotypes. We test this assumption prior to running modRP by looking for correlation across 

phenotypes. If there is significant association between one or more SNPs and the comorbid 

phenotype, correlation between columns will be greater than zero, though we expect the value to 

be small. With respect to assumption (3), under the same null assumption of no association the 

observed evidence for association at each SNP is random, so each SNP is independent. However, 

since linkage disequilibrium (LD) between SNPs may invalidate this assumption, we explicitly 

disrupt LD in modRP. With respect to (4), SNP minor allele frequencies (MAFs) influence 

power in association testing, so variance in the signal strength among SNPs could depend on 

MAF. We explicitly account for this possibility by grouping SNPs based on MAF.  

Control studies 

Lind data 

Lind, et al., [4] performed a GWA analysis for AD, another for ND, and a third for the 

comorbidity, in an Australian population. They replicated the AD and ND steps in a Dutch 

population, and then performed analyses for AD, ND, and AD/ND on the combined studies for 

the top 10,000 SNPs. Notably, the Australian DNA samples were pooled, so this is an example 

of a study where combining individuals’ genotype and phenotype data with another study is not 

practical. Also note that the Dutch study on AD used two diagnostic criteria: DSM IV based 

lifetime CIDI interviews in the NESDA [4] study and CAGE [4, 14] in the NTR study. We 

prepared each of these datasets for input to modRP, selecting the 764,218 SNPs that matched in 

the two studies, and replicated the previous analyses. To assess the importance of meeting the 

assumptions required by Fisher meta-analysis, for each study we performed a traditional Fisher 

meta-analysis, assuming a chi-square distribution for the Fisher statistic, as well as a modified 

Fisher meta-analysis, where we developed the null distribution of the Fisher statistic via 



sampling. To assess the importance of meeting the assumptions for RP, for each study we 

performed a standard RP in addition to the modified RP. We then compared results across the 

four methods (Fisher, mod Fisher, RP, and modRP).  

Correlations: We tested correlations with respect to assumptions (1) and (2), Table S1. In both 

the Lind and Yu datasets, correlations among the top N SNPs (“Top 0.1%” for Lind’s data and 

“Top 0.5%” for Yu’s data) are consistently higher than in the complete datasets “All”.  This 

result is consistent with assumption (1).  Also, the magnitude of correlation across phenotypes in 

the complete datasets is small (<11%), consistent with assumption (2).  

Lind, et al.     
Top 0.1% Aus AD Aus ND Dutch AD1 Dutch AD2
Aus ND 6.3%    
Dutch AD1 12.9% 8.5%   
Dutch AD2 14.4% 15.6% 3.6%  
Dutch ND 18.3% 18.2% 4.9% 7.7% 
All Aus AD Aus ND Dutch AD1 Dutch AD2
Aus ND 2.0%    
Dutch AD1 0.0% 0.2%   
Dutch AD2 0.0% 0.0% 0.4%  
Dutch ND 0.0% 0.0% 0.4% 0.2% 
Yu, et al.     
Top 0.5% Cocaine Opium Nicotine  
Opium 26.6%    
Nicotine 18.9% 15.7%   
Alcohol 16.5% 27.8% 18.6%  
All Cocaine Opium Nicotine  
Opium 5.4%    
Nicotine 10.5% 4.4%   
Alcohol 6.5% 2.6% 7.9%  
Table S1: Magnitudes of Correlations, Top n% SNPs versus Total.  Comparison of 

magnitudes of correlations between ranks for Lind data (Alcohol, Nicotine Dependence) and Yu 

data (Cocaine, Opium, Nicotine, and Alcohol Dependence).  Each phenotype is compared to all 

other phenotypes in the group. For each group, the “Top n%” (by Rank Product statistic) were 

correlated separately, then the entire set “All” were correlated. In both cases, the Top n% group 

shows a concentration of association evidence, while the overall correlation is modest. 



Yu data 

Yu, et al., [15] performed GWA analysis on six substance-use phenotypes (cocaine, opium, and 

alcohol dependence, as well as two measures of nicotine dependence and cocaine induced 

paranoia), in two study populations (AA, EA) plus the combined population. Yu, et al., used 

5633 “tagging” SNPs across the autosomal genome, spaced on average 518 kb apart.  Tagging 

SNPs are selected to survey potential causal variants in LD with the tagging SNPs. We prepared 

the Yu datasets for input and used modRP on the cocaine, opium, and alcohol dependence 

datasets, as well as the nicotine dependence dataset based on DSM IIIR diagnostic criteria. We 

first used RP to replicate the meta-analyses that Yu performed on each of the single disease 

phenotypes. Where they combined the EA and AA populations, we used modRP to combine 

summary statistics from the two studies. For each population, we then looked at each of the 4-

way, 3-way, and 2-way comorbidities. We adopted the same MAF values that Yu used, for each 

population.  

ModRP algorithm 

The modRP algorithm is implemented as a Perl script, available for research purposes from 

mceachin@umich.edu or by download from www.ncibi.org :  

1. Import the observed data, annotation, and parameter settings via the input file 

A. Select “m” (between 1 and N), as the number of SNPs to output with association 

statistics 

B. Select the number of iterations to be completed 

C. Select the minimum distance between SNPs expected to disrupt LD   

2. Store ranks, RP, and annotation data on all SNPs in an array  

3. Develop the null distribution of the RP statistic: 



A. Randomly select one rank statistic from each column (phenotype) and confirm that 

the SNPs related to the selected ranks are not linked; ensure all SNPs are on 

different chromosomes or, if any two are on the same chromosome, confirm that 

they are at least the user-selected distance apart 

B. Confirm that the SNPS related to the selected ranks are all in the same MAF group 

C. if A and B are true, form one RP for the null distribution by multiplying the selected 

ranks 

i. else - go to A  

D. If the null RP is smaller than each of the smallest “m” observed RPs, increment the 

variable that counts null RP values smaller than the observed RP (p-value count) 

E. Iterate over the user-selected number of cycles 

3. Calculate p-values for the SNPs with the smallest “m” RPs, as the proportion of null 

RPs equal to or less than the observed RP 

i. (p-value count + 1) / (#iterations +1) 

ii. Apply a Bonferroni correction based on the number of SNPs tested 

4. Output p-values for SNPs with the smallest “m” RPs and annotate SNPs that meet the 

Bonferroni correction criteria as “significant’ in the output 

5. Repeat the test in its entirety 

i. Confirm that the solution is essentially the same 

ii. Else, go to 1 and increase the number of iterations 

 

Systems biology 



Given two candidate genes derived from analysis of the Yu dataset, we placed them into 

biological context using the MetaCore database provided by GeneGo (GeneGo Inc., St. Joseph, 

MI).  We input our candidate genes and used MetaCore’s “build network” algorithm, with the 

following options: shortest paths, merged network, use canonical pathways, maximum steps = 4, 

show disconnected seed nodes, show shortest path edges only, discard low trust interactions, use 

functional and binding interactions, and use all compound-target interactions.  After adding 

cocaine and nicotine to the network, we trimmed off all paths longer than two steps, to improve 

the clarity of the figure.  GeneGo does not provide opium as a metabolite, so we added the opium 

receptors to the network, and again trimmed the paths longer than two steps to improve clarity.      

 

To place the genes tagged by these two variants into biological context, we first used GeneGo’s 

MetaCore software [16] to develop a network connecting the SOD3 and ADAMTSL3 (Figure S1). 

Notably, the genes are connected by a relatively simple path:  SOD3 activates transcription factor 

HIF1A, which activates transcription of signaling protein IFN-gamma, which inhibits expression 

of Calpain3, which cleaves ADAMTSL3. This path fits into a larger network that models these 

genes’ roles in susceptibility to both cocaine and nicotine dependence, consistent with our 

modRP results. Figure S2 shows the multiple simple paths from nicotine and cocaine to the 

genes in the path between SOD3 and ADAMTSL3. Clearly, both cocaine and nicotine are likely 

to exert environmental influences on HIF1A and IFN-gamma, and it is reasonable to expect that 

variation in either SOD3 or ADAMTSL3 would interact with these environmental effects. The 

Gene Ontology biological process “regulation of monooxygenase activity” is the most 

significantly over-represented among genes in this pathway (p-value 7.70E-11).   



ModRP results suggest that SOD3 is associated with cocaine/nicotine dependence, as well as 

opium dependence.  Figure S3 illustrates the influence of opium on this network. Notably, opium 

is more closely associated with SOD3 than ADAMTSL3 in this network, consistent with the 

evidence derived from the comorbidity study. Also consistent with comorbidity of psychiatric 

and substance use disorders, this network is strongly associated with “Depressive Disorder, 

Major” (p-value 3.43E-14) and “Substance-Related Disorders” (p-value 7.71e-12). Interestingly, 

this network is significantly associated with “Neoplasms, Squamous Cell” (p-value 1.79E-11) 

and several other cancers, as well as “Respiration Disorders” (p-value 4.23E-11) and “Muscular 

Diseases” (p-value 6.58E-11), consistent with a broadened impact of genetic variation associated 

with psychiatric and substance use disorders, on other medical phenotypes. This is an effect that 

we have seen in our recent work [17-19]. In addition, eight of the genes in this network are 

known targets of therapeutic drugs. Arguably, any of the drugs in this set could have therapeutic 

effects in treatment for cocaine, opium, and/or nicotine addiction. 

Effectiveness of modRP 

We consider several factors that may influence the effectiveness of modRP. The algorithm 

depends on previously developed summary data. This is a plus, in that the data may be 

readily available, though care should be taken to assess characteristics or limitations that are 

not evident in a simple table of SNPs with p-values.  For example, while modRP is suited to 

assessing comorbid phenotypes, the phenotypes assessed in each study must be well defined 

or the comorbid phenotype will not be well defined. In general, this information should be 

available in the manuscript describing the work. Also, the strength of the association signal 

seen in any particular study depends on the true effect size and strength as well as 

experimental factors such as sample size, genotyping platform, and phenotyping 



effectiveness. Notably, in the Lind study, the data from the Dutch group was imputed so we 

were able to match virtually all of the SNPs used in the Australian study. We foresee the 

possibility that data will come from studies where researchers are using SNP arrays to look 

at copy number variations in cancers. These studies may be suited to modRP because, 

though the sample sizes may be small, the effect sizes may be much larger. Equally, 

especially in cancer studies, modRP may be appropriate for combining haplotype analyses. 

Run time 

By using sampling to develop the null distributions of the RP statistics, we do not depend 

on distributional assumptions.  However, sampling requires high-performance computing 

capabilities and additional time. In general, we used modRP to assess empirical p-values for 

a subset of SNPs that are most likely to show significant association (top “m” SNPs, ranked 

by RP statistic). To assess the top 10 SNPs for either the Lind data or the Yu data, run time 

for 109 iterations on an Intel Core i7 CPU, Q 720 @1.60GHz processor, with 64 bit 

Windows OS took two to three hours, depending on the options. Larger input datasets do 

not appreciably increase run time, but assessing more SNPs for association and performing 

more iterations both increase run-time.    

Additional file 1, figure legends 

Figure S1  - Pathway connecting SOD3 with ADAMTSL3 

 

SOD3 activates HIF1A, which activates transcription of IFN-gamma, which represses expressin 

of Calpain 3, which cleaves ADAMTSL3.   



Figure S2  - Cocaine and nicotine interact with SOD3 with ADAMTSL3 

Both cocaine and nicotine act on the SOD3/ADAMTSL3 pathway via multiple intermediaries.  

Figure S3  - Opium also interacts with SOD3 with ADAMTSL3 

As with cocaine and nicotine, opium acts on the SOD3/ADAMTSL3 pathway via multiple 

intermediaries.  
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