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Methods

Construction and Analysis of MSMs. Detailed presentations of the construction and analysis of

Markov State Models are presented in the original reports of those models,1–3 as well as in current

manuscripts detailing the general state of the art in Markov model construction.4–8

Definition of a Contact. In what follows, we present a number of connections to simulations where

it is necessary to define a contact. Often, results can vary significantly from small changes in this

definition, due to the nature of a hard cutoff. Here, a contact was said to be formed if two residues

had any atoms within 5 Angstroms of each other, and were separated by at least 3 residues in se-

quence, which was relatively robust and produced reasonable native contact maps of the proteins

investigated.
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Derivation of Ω(n)

We begin with the exact expression for the number of contact maps with n native contacts

Ω(n) =
(aΩ−q)!

[(aΩ−q)− (q−n)]!(q−n)!
q!

n!(q−n)!

for ease of calculation, convert to logarithms and apply Stirling’s approximation. Next, we note

aΩ� q > n, so aΩ− q ≈ aΩ and aΩ− n ≈ aΩ. Making this substitution, after a straight-forward

calculation we arrive at

logΩ ≈ −q logaΩ +q logq−q log(q−n)+2q

−n logaΩ−n logn+n log(q−n)−2n

= n log
(

n
aΩ

)
− (q−n) log(q−n)−2n+ c0

with c0 a constant. Note that the logarithms involving n will vary much more slowly than n, so we

approximate them by their expectations, obtaining

logΩ ≈ −c1n+ c2(n−q)−2n+ c0

Ω(n) = exp [−(c1− c2 +2)n− c2q+ c0]

where our constants are

c0 = −q logaΩ +q logq+2q

c1 = log(〈n〉/aΩ)

c2 = log(q−〈n〉)

We could, in principle, easily evaluate these constants for our model, however, our forms here

have taken a number of approximations, thus our derived values of these constants may not be
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those best suited to recapitulate the original function. Furthermore, certain properties for Ω(n) are

desired expected based on simple physical arguments. Therefore, we have adopted the approach

outlined below.

Of primary importance is the fact that we expect a single native state, both physically and

from our original expression. This dictates Ω(n = q) = 1, so the argument of the exponential in

the expression for Ω(n) should be identically 0 for n = q. It follows that a factor (q− n) must

therefore appear in the exponent. It is straightforward to show that, since the argument of the

exponent in Ω(n) = exp [−c2q− (c1− c2 +2)n+ c0] is linear in both q and n, the simplest form of

this expression consistent with this requirement is

Ω(n)≈ ec(q−n)

where a quick calculation shows 1 < c < 10 for realistic values of q (note that q≈ 0.6N, see “Lin-

earity of Contacts and Chain Length” below). Graphical analysis shows that this approximation is

consistent with the original expression, but does introduce some minor error. We note that since

the original counting of the contact maps would over count states, small numerical errors may not

decrease the fidelity of the model. More important is that we obtain an expression that leads to a

large (exponential) number of states, consistent with Levinthal-style reasoning.

Approximation of qα,β ,N

Consider 〈qα,β ,N〉 ≈ bqβ ,N , i.e. we reason that the average number of native contacts two states

share is directly proportional to the number of native contacts one of those states has. We choose

the product state β as our reference, since to calculate the connectivity (degree) of a state, it seems

prudent to consider transitions to that state, rather than from the state. The approximation will be

valid if the native contacts are distributed throughout contact space in some sort of regular fashion,

an assumption that seems reasonable for real proteins.

Recall aΩ ≈ 104, E ≈ −0.5, c ≈ 7 for a 100 residue protein, and the power exponent of the
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scale-free kinetic network is

µ =−c(bE log2)−1

The vast literature on scale-free networks show nearly all such networks have an exponent 2 < µ <

3.9 We expect that our network is not too far from these “typical" values, and so µ is likely O(1),

leading to an estimate of b ≈ O(10−1). We note, however, that b does not feature prominently in

the model, and its exact numerical value is relatively inconsequential.

Bounds on λ2

The mathematical investigation of the spectral properties of graphs, especially scale-free graphs, is

an active area of research. While the general properties of the spectra of scale-free graphs remain

largely unknown (though progress is being made, see e.g. the work of Samukhin, Dorogovtsev,

and Mendes10), there exist some easy to prove bounds on the second-smallest eigenvalue of the

Laplacian (λ2) for graphs in general.11 Here, we do not explicitly present any proofs, but simply

recall bounds from sources where they are discussed in detail.

One well-known bound from above is

λ2 ≤
V

V −1
dmin

where V is the size of the graph (the number of nodes) and dmin is the minimum degree of any

node. Of course, this approaches λ2 ≤ dmin as V → ∞. We employ this bound directly.

The second bound is

λ2 ≥
4

ρV

where ρ is the graph diameter, or the largest number of edges needed to connect any two nodes in

as direct a manner as possible. It has been shown that scale-free graphs are ultra-small, i.e. that

the diameter scales as ρ ∼ log logV as V → ∞.12,13 Using this scaling, we can evaluate this bound
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in terms of our model. Recall

V = ΩT =
ecq+c−1

ec−1
> ecq

gives

λ2 >
4

ecq log(cq)

> me−cq

where we have approximated the slowly varying 4/ log(cq) as a constant, m. Note that since

protein structures are not expected to exceed values of q ≈ 1000, we can retain the bound for all

proteins by choosing m to be the worst case, specifically m = 4/ log(100× 1000) ≈ 0.3. Now,

recalling from the text

dmin = 2Eq = eEq/ log2

we obtain

λ2 > m(dmin +2+ e−c/E)

> mdmin

this is our second bound. Note that this bound is not truly exact, since we have presumed the limit

V → ∞ and that q is bounded from above. Since our network is very large, and the bound on q

holds physically, we expect this bound to be applicable for all proteins considered by this model.

Both upper and lower bounds, linear in dmin, suggest that λ2 should also scale linearly with

dmin. Numerical simulations, presented in the manuscript, support this linear scaling.

Collapse in MD Simulations of Protein Folding

All-atom molecular dynamics simulations of protein folding indicate that the vast majority of pro-

tein conformations are collapsed in the absence of denaturant, even in the unfolded state ensem-
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ble.14,15 By simply counting the frequency of the total number of contacts, it becomes clear that the

distribution of the number of contacts is peaked just below its maximal possible value (Figure 1).

Further, this peak in the number of contacts is close to the number of contacts in the native state.

This directly supports the globular approximation employed in the derivation of this simple model.

0 15 30 45 60
Contacts at Equilibrium

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
e
q
u
e
n
cy

Villin

0 15 30 45 60
Contacts at Equilibrium

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

WW

0 15 30 45 60
Contacts at Equilibrium

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Lambda

Figure 1: Distributions of contacts in converged MSMs of protein folding, for three different sys-
tems.1–3 Each system was simulated in explicit water. Three histograms are shown, (black) total
number of contacts, (green) non-native contacts, and (blue) native contacts. Vertical red lines show
the number of contacts in the native state.

Linearity of Contacts and Chain Length

A simple plot of the 78 proteins examined experimentally shows clearly that, for two-state folders,

the number of contacts is linear in the chain length (Figure 2).
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Figure 2: Scaling of the number of residue-residue contacts in the protein native state with chain
length. The relationship is linear with a slope of ρN = 0.58, as determined from a least-squares fit
(R2 = 0.71). Data is the 78 proteins from Ref.16

Estimation of Energetic Parameters

In the main text, we report the estimates εx ≈ −1 εN ≈ −3, εNN ≈ −2, and σ ≈ 1. These values

were estimated from three independent considerations: simple thermodynamic concerns, all-atom

simulations, and literature reports of similar values from other simple models and calorimetric

experiments. Below, we detail our investigations into each of these sources and justify the final

reported ranges.

Estimation from Expected Thermodynamics

A very simple evaluation of εx can be quickly obtained from a back of the envelope calculation.

We preform this quickly here and use it to check the consistency of the more advanced methods

that follow.

Consider an archetypical 100 residue protein. Proteins of this size have thermodynamic stabil-

ities of approximately ∆Ff old = 10 kcal mol−1. From the previous section, we estimate that the

native state will have about q = 60 contacts. Assuming that ∆Ff old corresponds, under the globular
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approximation, to taking the protein from 60 non-native to 60 native contacts, we can write

∆Ff old = φNq−φNNq

= φxq

inserting our estimates for q and ∆Ff old , we obtain φx ≈ 0.18 kcal mol−1.

Estimation from Simulation

We have estimated the effective potential of interaction for native and non-native contacts from

three well-studied Markov models parametrized from all-atom MD with explicit water.1–3 Each

state i of the Markov model has an equilibrium probability Peq(i) and a number of native contacts

ni and non-native contacts qi. The states are small enough that ni and qi vary negligibly within a

state. This allows us to write down the fraction of contacts in the system that are native, non-native,

or broken at equilibrium

xN = ∑
i

niPeq(i)/nmax

xNN = ∑
i

qiPeq(i)/qmax

1 = xN + xNN + xL

where each x represents the fraction of contacts that are in a native contact, non-native contact, or

in a loop (no contact) at equilibrium. Here, nmax and qmax denote the maximum possible native

and non-native contacts that can form, respectively, and were estimated from that states in the

simulation that had the most contacts.

Recall we defined ε as corresponding to the average energy associated with the reaction

R(aq)→ 1
2

R2(protein) ∆F/kT = ε +σ
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so ε represents the potential gained in going from a loop conformation to a contact-formed confor-

mation. We can define a convenient reference free energy by setting the free energy of the a loop

conformation, εL, to be 0. Te remaining energy values can then be calculated by Boltzmann factors

relative to this energy. Since exp(−εL) = exp(0) = 1, this allows us to easily find the effective

energies of non-native and native contacts

xi

xL
=

exp(−εi−σ)

exp(−εL)

εi−σ = − log(xi/xL)

where we have written i∈ {N,NN} to concisely represent either native or non-native contacts. The

results of this procedure are documented in Table 1.

Table 1: Parameters Estimated From Simulation

Protein N Contacts T (K) xN xNN xL φN−σ φNN−σ φx
Villin 35 28 300 0.59 0.4 0.01 -2.40 -2.17 -0.23
WW (FiP35) 35 27 395 0.42 0.31 0.27 -0.33 -0.09 -0.24
Lambda 80 89 370 0.44 0.41 0.15 -0.85 -0.78 -0.07

Units of φ are kcal mol−1

Value of sigma is estimated to be 1 to 2 at 300K

There are a number of difficulties with this procedure. First, it implicitly assumes that contact

formation is independent, contact energies between distinct residues are pairwise additive, and that

the errors due to MSM construction and contact definition are small. In particular, we noticed

that small changes in the contact definition (specifically the distance cutoff) could yield significant

changes in the absolute values of φN and φNN , but that the relative value φx was much more robust.

This is apparent from the direct comparison between the values obtained for separate proteins. A

further issue here is the small sample size, and the bias of the sample towards very small proteins.

At the time of publication, this data represented all the MSMs of protein folding in explicit water

available.

Despite these potential sources of error, for the proteins studied here, we obtain a value for φx

very similar to what we might expect from our back of the envelope calculation above, indicating
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that this value is indeed O(10−1). This level of precision is probably all that is needed for the

model presented, considering its approximate nature. To complete the model, however, we need

accurate estimates of σ and either φN or φNN .

Estimations in the Literature

Other simple models of protein folding, as well as very careful calorimetric experiments, provide

a third way to estimate energetic values. The entropy of loop formation, in particular, is robustly

determined by calorimetric experiments to be in the range of 1 to 7 entropy units, depending on

the protein. It is also possible to estimate the effective value of φN from the frequencies of contacts

found in the PDB, following the classic work of Miyazawa and Jernigan. Estimation of non-

native contact energies are very difficult experimentally, and we found no reports systematically

evaluating these energies in the literature. Other authors of simple models have estimated the

excess energy, εx, however, and these provide an indirect route to non-native energies.

Table 2 reports the values corresponding to our thermodynamic contact potentials found in the

literature, along with our estimates from all-atom simulation. Below, we briefly detail where each

estimate comes from, and any processing or interpretation we had to perform.

Table 2: Parameters from Literature

Method φx φN φNN ∆Sloop Comments
All-atom Simulation1–3 -0.2 -1.2 -1.0 - Averages of Villin, WW, Lambda
Calorimetry17 - -1.5 ± 1.5 - 4.0±3.0 Experiment
PDB Statistics18,19 - -1.5 - - MJ Potential Statistics
Levinthal Estimate20 -1.0 - - - Simple non-protein like model
Monte Carlo Algo.21 -3.0 - - - Protein-like simple simulation
Ising-Like Model22 -0.6 - - 3.7 Fit parameters to experiment

Units of φ are kcal mol−1

Units of ∆S are cal mol−1 K−1

Calorimetry. Makhatadze and Privalov have provided a detailed summary of calorimetric ex-

periments detailing the energetics of protein contact interactions.17 By surveying a large sample of

protein data, they have compiled reliable estimates for native contact enthalpies the the entropies.
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These values represent our most confident estimates for energetics in the model.

PDB Statistics. In their classical work, Miyazawa and Jernigan have calculated effective con-

tact potentials for each residue-residue pair based on the statistics of the PDB, generating a poten-

tial for use in various simple models.18,19 By averaging the frequency of residue-residue contacts

report with the energies of each of those contacts, we obtained an averaged native contact energy

of -3.5 kT, when compared to random contact formation. Taking these random interactions as a

zero of energy, we obtain an effective native contact potential.

Levinthal Estimate. In 1992 Zwanzig, Szabo, and Bagchi showed that a simple bias in energy

towards native contacts over non-native contacts was enough to dramatically increase the rate of

folding.20 While their considerations were very simple, inspired by the canonical monkeys-with-

typewriters problem, and did not contain any explicit protein-like features, their argument is a form

of the idea of statistical persistence derived in our model. They predicted that a native energy bias

of 2 kT per contact would be sufficient to lead to biologically relevant folding times.

Monte Carlo Algorithm. Linse and Linse have reported a simple Monte-Carlo algorithm that

models protein folding in a manner very similar to the analytical model presented here.21 Similar

to the model of Zwanzig, they model native contacts as slightly more attractive than non-native

contacts, and show that this leads to rapid folding in numerical simulations. While they investigate

a range of different contact energies, a native bias of -11 kJ mol−1, along with a small cooperativity

energy, is reported as their most realistic value and used for many of the reported results.

Ising-Like Model. Eaton and Munoz have reported many results on an Ising-like model of

protein folding, with parameters for the energy (−0.63 kcal mol−1) and entropy (3.7 cal mol−1

K−1) of native contact formation obtained by fitting to experimental data.22–24

Variation in the energetic estimates between these diverse techniques is fairly small, and there

does appear to be some consensus, allowing us to estimate these energetic parameters with some

confidence.
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