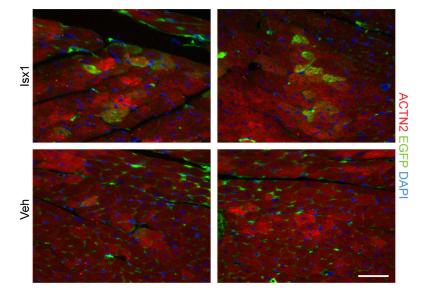

Supporting Information for

Targeting native adult heart progenitors with cardiogenic small-molecules

Jamie L. Russell¹, Sean C. Goetsch¹, Hector Aguilar², Doug E. Frantz², Jay W. Schneider^{1*} ¹Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA ² Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA ^{e-mail: jay.schneider@utsouthwestern.edu}



Supplemental Figure 1. Isx1 activates DNA synthesis in myocardial cells, including cardiomyocytes, *in vivo*. BrdU immunohistochemistry (red) in uninjured adult mouse heart injected with Isx (a-e) or vehicle (f and g) co-stained with ACTN2 (green) and DAPI (blue) (Scale bars = 10μ m). Probable BrdU+ cardiomyoctes are depicted in images a-e and g and non-cardiomyocytes in images f and h.

Supplemental Figure 2. Isx1 increases phosphohistone H3 positive myocardial cell, including cardiomyocyte, number *in vivo*. Phospho-histone H3 immunohistochemistry (red) in uninjured adult mouse heart injected with Isx (a-e) or vehicle (f and g) co-stained with ACTN2 (green) and DAPI (blue) (Scale bars = 10μ m). A probable phospho-histone H3+ cardiomyocyte is depicted in image (a) and several other positive non-cardiomyocytes in images b-g.

Supplemental Figure 3

Supplemental Figure 3. Isx1 increases Notch-CBF1-RE_{x4}-EGFP myocardial cell, including cardiomyocyte, number *in vivo*. EGFP (red) immunohistochemistry localized to TNNI3 (green) cardiomyocytes, co-stained with DAPI (blue) in uninjured adult mouse heart injected with Isx (upper panels) or vehicle (lower panels) (Scale bars = 10μ m).