Pml represses tumor progression through inhibition of mTOR

Rosa Bernardi^{1,5}, Antonella Papa¹, Ainara Egia¹, Nadia Coltella^{1,4}, Julie Teruya-Feldstein², Sabina Signoretti³ and Pier Paolo Pandolfi¹

¹Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA

²Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA

³Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

⁴Division of Molecular Oncology, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy

⁵Current address: Division of Molecular Oncology, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy

Running title: PML and mTOR in tumor progression

Correspondence to: Pier Paolo Pandolfi; email: <u>ppandolf@bidmc.harvard.edu</u> and Rosa Bernardi; email: <u>bernardi.rosa@hsr.it</u>

Character count: 27774

Supporting Information Figure 1. Pml expression in kidney.

A. Immunohistochemical analysis of gelsolin expression as a marker of distal tubules and collecting ducts in kidney cortex from 18-months old mice of the indicated genotype. Scale bars: 50μ M.

B. Immunohistochemical analysis of Pml expression in kidney medulla and cortex of wt 8 months old mice. Arrows indicate Pml expression in cortical tubules. Scale bars: 50µM.

C. Specific Pml nuclear staining is absent in section from Pml^{-2} from 8-months old mice. Scale bars: 50µM.

D. Immunohistochemical analysis of gelsolin, Pml/phospho-S6, and NaCl cotransporter (NCC) performed on consecutive kidney sections from 8-months old mice (scale bar: 50μ M). Arrows point to the same kidney tubules that in consecutive sections express all three markers analyzed. All images are representative of ≥ 3 independent experiments showing the same result.

Supporting Information Figure 2. Liver TORC1 activity upon compound inactivation of *Pml* and *Tsc2*.

A. Western blot analysis of total S6K and 4EBP1 in liver and kidney extracts from 4-months old mice of the indicated genotypes.

B. Western blot analysis of phospho/total proteins in liver and kidney extracts from 4-months old mice of the indicated genotypes. Graph on the right represents ratios of phospho/total proteins.

C. Western blot analysis of phospho/total 4EBP1 in kidney extracts from 4-months old mice of the indicated genotypes. Graph on the right represents average ratios of phospho/total 4EBP1 of the samples in Supporting Information Figure 2B and C. P value was calculated by Student's t-test.

Supporting Information Figure 3. Compound inactivation of *Pml* and *Tsc2* does not increase Akt phosphorylation in the kidney.

Representative immunohistochemistry of phospho-Akt (Ser473) on kidney sections from 8 months old mice of the indicated genotype (scale bar: 50μ M). The staining appears non-specific as it accumulates at the lumen of tubuli and at the cilia.

Supporting Information Figure 4. TORC1 activation in $Pm\Gamma^{-}Tsc2^{+/-}$ tumors upon Tsc2 LOH.

Ratios of phospho-S6 and phospho-4EBP1 over total S6 and 4EBP1 are indicated in $Tsc2^{+/-}$ mice of different *Pml* genotypes. *Pml*^{-/-} tumors are further divided according to the status of *Tsc2* LOH, indicating that TORC1 activity is slightly higher in tumors that have undergone *Tsc2* LOH.

