SUPPORTING INFORMATION

MATERIALS AND METHODS

Real Time RT-PCR

A cDNA fragment of the genes encoding CXCL1, CXCL3, CXCL13 and β-actin was amplified by PCR and cloned into the pCR2.1-TOPO vector (Invitrogen) according to the recommendation of the manufacturer. The constructed plasmids were purified using a QIAprep Spin Miniprep kit (Qiagen) following the manufacturer's instructions. Serial ten-fold dilutions (10^5 to 10^1 molecules) of the plasmids were used to generate the standard curves for quantitative real time PCR (qPCR). The β -actin and the rsp-9 genes were used as an internal reference gene. The following oligonucleotides and annealing temperatures were used: for β actin, 5'-TGG AAT CCT GTG GCA TCC ATG AAA C-3' and 5'-TAA AAC GCA GCT CAG TAA CAG TCC G-3' (60°C, 349 bp); for gro-1/cxcl1 5'-TGT TGT GCG AAA AGA AGT GC-3'and 5'-CGA GAC GAG ACC AGG AGA AA-3' (60°C, 249 bp); for cxcl3 5'-CTC CAG ACT CCA GCC ACA CT-3' and 5'-GTC ACC GTC AAG CTC TGG AT-3' (60°C, 227 bp); for cxcl13 5'-TTC TGG AAG CCC ATT ACA CAA AC-3' and 5'-GCG TAA CTT GAA TCC GAT CTA TGA T-3' (55°C, 96 bp). Cycling conditions for PCR amplifications were 15 s denaturation at 95°C, 30 s annealing at 60°C and 30 s elongation at 72°C for 30 cycles. The qPCR amplification was performed using a LightCycler 480 Real Time PCR system (Roche Applied Science, Mannheim, Germany) and Maxima SYBR Green qPCR Master Mix (Fermentas, St. Leo-Rot, Germany). All qPCR reactions were performed in a 25 µL mixture containing 1/10 volume of cDNA preparation, 1x Maxima SYBR Green qPCR Master Mix and 0.3 µM of each primer. Thermal cycling conditions for qPCR amplifications were performed according to a three-step cycling protocol. The cycling conditions were 10 min initial denaturation at 95°C, amplification and quantification for 40 cycles (denaturation at 95°C for 15 s, annealing at 60°C for 30 s, and extension for 30 s at 72°C with a single fluorescence measurement), melting curve program (60°C-95°C with a heating rate of 0.1°C per second and a continuous fluorescence measurement) and a final cooling step at 40°C. Cycle threshold values for *cxcl1*, *cxcl3* and *cxcl13* were normalized to the housekeeping gene β -actin. The data were calculated using the Pfaffl equation (Pfaffl, 2001) and expressed as ratio of relative mRNA expression levels.

Reference: Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29: e45.

Determination of anti-S. aureus specific serum antibodies

96-well Nunc-Immuno MaxiSorp microtiter plates (Nunc, Roskilde, Denmark) were coated with 100 μ L/well of *S. aureus* Wood 46 cell lysate (adjusted to 10⁹ CFU/mL prior lysis and diluted 10-folds in 0.1 M Carbonate buffer, pH 9.5) and incubated overnight at 4°C. After blocking with PBS-10% FCS for 1 h at room temperature, serial 2-fold dilutions of sera were added and the plates were further incubated for 2 h at room temperature. After extensive washing, 100 μ L/well of goat anti-mouse IgG conjugated to horseradish peroxidase (GE healthcare, München, Germany) was added, plates were incubated for 1 h at room temperature, washed and the reaction developed with 100 μ L/well of TMB (3,3',5,5'-Tetramethylbenzidine; Sigma St. Louis, MO, USA) for 30 min at RT. The reaction was stopped with 50 μ L of 1 M sulfuric acid (Roth, Karlsruhe, Germany) and the optical density measured at 450 nm versus 570 nm. Endpoint titers were expressed as the reciprocal of the last dilution exhibiting an optical density at 450 nm of 0.1 units above the negative control.

In vivo depletion of macrophages and neutrophils

Depletion of macrophages in C57BL/6 mice was performed as previously described (Goldmann et al, 2004). Briefly, C57BL/6 mice were intraperitoneally injected twice with 1

mg of carrageenan type IV λ (Sigma, Deisenhofen, Germany) at day 3 and 1 prior to bacterial challenge (acute phase of infection) or day 26 and 28 after bacterial inoculation (persistent phase of infection). Control mice received 200 µL of sterile PBS. For macrophages depletion of RAG2^{-/-} mice, 1 mg of carrageenan type IV λ was injected intraperitoneally at day 10 and 12 after bacterial inoculation. Depletion of macrophages was verified by flow cytometric analysis of peritoneal cells obtained after washing the peritoneal cavity of treated mice with sterile PBS. Peritoneal cells were stained with PE-conjugated anti-mouse F4/80 mAb (Pharmingen) and analyzed using a FACSCaliburTM flow cytometer (Becton Dickinson).

For depletion of neutrophils in C57BL/6 mice during the acute infection mice received an intravenous injection of 100 µg of monoclonal rat anti-RB6 antibody (clone 8C5) 2 days prior to bacterial inoculation. For depletion of neutrophils during the persistent phase of infection, mice received an intravenous injection of 100 µg of anti-RB6 antibody 28 days post inoculation. Control mice received equivalent amounts of isotype control antibodies in sterile PBS. For depletion of neutrophils in RAG2^{-/-} mice, 100 µg of anti-RB6 antibody were injected intravenously at 10 days post inoculation Depletion of neutrophils was verified by flow cytometric analysis of peripheral blood cells. Peripheral blood was obtained from depleted and control mice after cardiac puncture. After RBC lysis, blood granulocytes were stained with PE-conjugated anti-mouse Gr-1 mAb (Pharmingen) and analysed using a FACSCalibur™ flow cytometer (Becton Dickinson).

Reference: Goldmann O, Rohde M, Chhatwal GS, Medina E (2004) Role of macrophages in host resistance to group A streptococci. Infect Immun 72: 2956-2963

Flow cytometry

A single cell suspension was prepared from the spleen and peripheral lymph nodes of infected mice at day 7, 28 and 5 of infection. Erythrocytes were lysed after incubation with ACK

buffer for 5 minutes at room temperature and vigorous washing. Fc receptors were blocked by incubating the spleen cells with anti-mouse CD16/CD32 mAb (BD Pharmingen, San Diego, CA) for 5 minutes at room temperature and the lymphocytes were incubated with fluorochrome-conjugated anti-mouse antibodies (BD Pharmingen) against CD4, CD8, CD45R/B220, CD79b, CD44, or CD62L for 45 minutes at 4°C in the dark. The cells were then thoroughly washed and flow cytometry analysis was performed using the FACSCalibur[™] flow cytometer (Becton Dickinson).

Antigen resting experiments

Bulk splenocytes isolated from *S. aureus*-infected C57BL/6 mice at 21 days p.i. were injected intravenously into RAG2^{-/-} mice (appr. 5 x 10^7 cells). The reconstituted RAG2^{-/-} mice were sacrificed at day 7 and 28 after cell transfer, the spleen removed, transformed in a single cell suspension and splenocytes were restimulated *in vitro* with either different concentrations of heat-killed *S. aureus* or with 1 µg/mL anti-mouse CD3 ϵ mAb plus 1 µg/mL anti-mouse CD28 mAb (eBioscience, San Diego, CA, USA). After 3 days of incubation, the cells were pulsed with 1 µCi of ³H-thymidine (Amersham, Buchler, Germany) and 16 to 18 h later the cells were harvested on Filtermats A (Wallac, Freiburg, Germany) using a cell harvester (Inotech, Wohlen, Switzerland). The amount of ³H-thymidine incorporation was measured in a gamma scintillation counter (Wallac 1450, MicroTrilux).

SUPPLEMENTAL FIGURE LEGENDS

Figure S1: Efficiency of neutrophil depletion in *S. aureus*-infected mice. Mice were injected intravenously with 100 μ g of anti-mouse RB6 mAb (A and B) or with equivalent amounts of isotype control antibodies (C and D) at day 28 after challenge with 7 x 10⁷ CFU of *S. aureus*. The efficacy of neutrophil depletion (>90%) was assessed 2 days later by flow cytometry

analysis of peripheral blood using PE-conjugated anti-mouse Gr-1 antibodies. (A and C) Density plots of peripheral blood cell populations according to size (FCS-H) and granularity (SSC-H) co-ordinates. A broken line outlines the neutrophil population. (B and D) Histogram analysis showing the percentage of neutrophils (Gr-1⁺).

Figure S2: Efficiency of macrophages depletion in *S. aureus*-infected mice. Mice were intraperitoneally injected twice with 1 mg of carrageenan type IV λ (A and B) or with PBS (C and D) at day 26 and 28 after challenge with 7 x 10⁷ CFU of *S. aureus*. The efficacy of macrophage depletion (>95%) was assessed 1 day later by flow cytometry analysis of peritoneal cells using P-conjugated anti-F4/80 mAb. (A and C) Density plots of peritoneal cell populations according to size (FCS-H) and granularity (SSC-H) co-ordinates. Gated by the broken line is the macrophage population. (B and D) Histogram analysis showing the percentage of macrophages (F4/80⁺).

Figure S3: Innate immune response is critical for the control of *S. aureus* during the acute phase of infection but is dispensable during the persistent phase. (A and B) C57BL/6 mice were depleted of neutrophils by receiving an intravenous injection of 100 μ g of anti-muse RB6 mAb either 2 days prior (A) or 28 days after (B) challenge with 7 x 10⁷ CFU of *S. aureus*. Control mice received an equivalent amounts of isotype control antibodies in sterile PBS. Bacterial burdens in the kidneys of infected mice were determined 24 h after bacterial inoculation in (A) and 48 h after neutrophil-depletion in (B). (C and D) C57BL/6 mice were depleted of macrophages by intraperitoneal injection with 1 mg of carrageenan type IV λ at day 3 and 1 prior to bacterial challenge (C) or 26 and 28 days after bacterial inoculation (D). Control mice received equivalent volume of PBS. Bacterial burdens in the kidneys of infected mice were determined 24 h after the last

carrageenan dose in (D). Each bar represents the mean \pm SD of three independent experiments.

Figure S4: Course of *S. aureus* infection in the kidneys of RAG2/IL-2R $\gamma^{-/-}$ mice after intravenous inoculation with *S. aureus* (black symbols). The course of *S. aureus* infection in the kidneys of immunocompetent C57BL/6 mice (white symbols) is included for comparison. Each symbol in represents the mean ± SD of five animals per mouse strain and per time point and it is the compilation of three independent experiments.

Figure S5: RAG2^{-/-} mice exert some degree of control over bacterial growth during the persistent phase of *S. aureus* infection that is mediated by innate immune mechanisms. (A) RAG2^{-/-} mice were depleted of neutrophils by receiving an intravenous injection of 100 µg of rat anti-RB6 mAb (black bars) 10 days after challenge with 7 x 10^7 CFU of *S. aureus*. Control mice received equivalent amounts of isotype control antibodies in sterile PBS (white bars). Bacterial burdens in the kidneys of infected mice were determined 48 h after neutrophildepletion. (B) Histogram analysis showing the efficiency of neutrophil depletion in peripheral blood of treated mice. The amount of neutrophils in peripheral blood of isotype-treated mice is depicted in the upper panel and in anti-RB6-treated mice in the lower panel. (C) RAG2^{-/-} mice were depleted of macrophages by intraperitoneal injection with 1 mg of carrageenan type IV_λ at 10 and 12 days after bacterial inoculation (black bars). Control mice received equivalent volume of vehicle PBS (white bars). Bacterial burdens in the kidneys of infected mice were determined 24 h after the last carrageenan dose. Each bar represents the mean \pm SD of the compilation of three independent experiments. (D) Histogram analysis showing the efficiency of macrophage depletion in the peritoneal cavity of treated mice. The amount of macrophages in the peritoneal cavity of vehicle-treated mice is depicted in the upper panel and in carrageenan-treated mice in the lower panel.

Figure S6: Confirmation of B and T cells reconstitution of $RAG2^{-/-}$ mice after adoptive transfer of splenocytes from C57BL/6 donor mice. $RAG2^{-/-}$ recipient mice were reconstituted 48 h prior to *S. aureus* inoculation with splenocytes (appr. 5 x 10⁷ cells) obtained from immunocompetent C57BL/6 mice. Splenocytes isolated from C57BL/6 donor mice (left panels), $RAG2^{-/-}$ recipient mice (middle panels) and reconstituted $RAG2^{-/-}$ mice at day 58 after cell transfer (right panels) were stained with antibodies against CD45R/B220 (B cells), CD4 or CD8 and subjected to flow cytometry. Numbers within histograms indicate the mean percentage of the specific cell population (3 mice per group). The reconstitution efficiency was ~50% for B cells, 67% for CD4⁺ T cells and56% for CD8⁺ T cells.

Figure S7: Serum anti-*S. aureus* IgG titers in uninfected and *S. aureus* infected mice at day 56 of infection. Each bar represents the mean \pm SD of the reciprocal IgG end point titer of 9-18 mice per group. ***, p < 0.001.

Figure S8: Purity of sorted B cells. The purity of the sorted B cells was analyzed by flow cytometry using anti-CD45R antibodies. Histogram analysis showing the percentage of B cells in whole spleen (A), in sorted B cells (B) or in the non-B cells fraction (C). The purity of sorted B cells was >95.

Figure S9: Purity of sorted T cells. The purity of the sorted T cells was analyzed by flow cytometry using anti-CD4 and anti-CD8 antibodies. Histogram analysis showing the percentage of T cells in whole spleen (A), in sorted T cells (B) or in the non-T cells fraction (C). The purity of sorted T cells was >95%.

Name	Gene Bank ID	Description	Fold	change
			Acute	Persisten
Chemokines and	chemokine receptors			
Cxcl2 (Mip-2α)	NM_009140	chemokine (C-X-C motif) ligand 2	45.4	38.1
Cxcl1 (KC)	NM_008176	chemokine (C-X-C motif) ligand 1	19.4	5.4
Cxcl3 (Mip-2β)	NM_203320	chemokine (C-X-C motif) ligand 3	18	6.8
Cc128	NM_020279	chemokine (C-C motif) ligand 28	9.5	-
Cxcl13	NM_018866	chemokine (C-X-C motif) ligand 13	6.4	5.6
Cel3 (Mip-1a)	NM_011337	chemokine (C-C motif) ligand 3	6.5	10.1
Cxcl5	BC024392	chemokine (C-X-C motif) ligand 5	5.1	13.7
Ccl9	NM_011338	chemokine (C-C motif) ligand 9	3.2	5
Ccl4 (Mip-1β)	NM_013652	chemokine (C-C motif) ligand 4	2.7	3.7
Ccl6	NM_009139	chemokine (C-C motif) ligand 6	2.5	4.8
Ccl12(MCP-5)	NM_011331	chemokine (C-C motif) ligand 12	-	4.3
Cel19 (Mip-3α)	NM_011888	chemokine (C-C motif) ligand 19	-	2.3
Ccl5 (RANTES)	NM_013653	chemokine (C-C motif) ligand 5	-	4.6
Ccl7 (MCP-3)	NM_013654	chemokine (C-C motif) ligand 7	-	2.5
Ccl8 (MCP-2)	NM_021443	chemokine (C-C motif) ligand 8	-	25
Cxcl9 (Mig)	NM_008599	chemokine (C-X-C motif) ligand 9	-	4.5
Ccrl	NM_009912	chemokine (C-C motif) receptor 1	3.15	4
Cer5	NM_009917	chemokine (C-C motif) receptor 5	2.3	4.9
Ccr2	NM_009915	chemokine (C-C motif) receptor 2	-	4.4
Cx3cr1	NM_009987	chemokine (C-X3-C) receptor 1	-	2.8
Cxcr4	NM_009911	chemokine (C-X-C motif) receptor 4	-	3.8

Table SI. Genes with increased expression in the kidneys of *S. aureus* infected mice at day 2(Acute) and day 28 (Persistent) of infection when compared with uninfected control animals.

Cxcr6	NM_030712	chemokine (C-X-C	-	3.4
		motif) receptor 6		

Cytokines and cytokine receptors

I16	NM 031168	interleukin 6	27.1	2.4
Illb	NM_008361	interleukin 1 beta	4.1	9.7
Ltb	NM_008518	lymphotoxin B	-	3.7
Il1rn	NM_001039701	interleukin 1 receptor antagonist	3.4	3.2
Il10ra	NM_008348	interleukin 10 receptor, alpha	-	2
Il18r1	NM_008365	interleukin 18 receptor 1	-	3.8
Il1r2	NM_010555	interleukin 1 receptor, type II	2.1	2.4
Il2rg	NM_013563	interleukin 2 receptor, gamma chain	-	3.3

Clusters of differentiation

Cd14	NM_009841	CD14 antigen	10.6	7
Cd53	NM_007651	CD53 antigen	2.4	8.2
Cd44	NM_001039	CD44 antigen	2.3	8.4
Cd74	NM 001042605	CD74 antigen	2.2	4.3
Cd300lf	NM_145634	CD300 antigen like	2.1	5.6
		family member F		
Cd68	NM_009853	CD68 antigen	-	6
Cd79b	NM_008339	CD79B antigen	-	5.7
Cd3g	NM_009850	CD3 antigen, gamma	-	4.9
		polypeptide		
Tcrg-V3	ENSMUST00000103558	T-cell receptor gamma,	-	6.7
		variable 3		
Cd52	NM_013706	CD52 antigen	-	4.8
Cd16311	NM_172909	CD163 molecule-like 1	-	4.4
Thy1	NM_009382	Thymus cell antigen 1,	-	4.2
		theta		
Cd48	NM_007649	CD48 antigen	-	3.7
Cd83	NM_009856	CD83 antigen	-	3.3
Cd84	NM_013489	CD84 antigen	-	3.3
Cd72	NM_0011103	CD72 antigen	-	3.2
Cd86	NM_019388	CD86 antigen	-	3
Cd300lb	NM_199221	CD300 antigen like	-	3.2
		family member B		
Cd274	NM_021893	CD274 antigen	-	3
Cd3d	NM_013487	CD3 antigen, delta	-	2.5
		polypeptide		
Cd38	NM_007646	CD38 antigen	-	2.4
Cd5	NM_007650	CD5 antigen	-	2.2
Cd37	NM_007645	CD37 antigen	-	2.2
		_		

Immunoglobulins

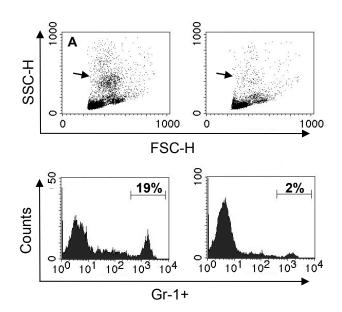
Ighg1	ENSMUST00000103419	immunoglobulin heavy constant gamma 1	-	426
Igh-6	BC018365	(G1m marker) immunoglobulin heavy chain complex	-	154
Ighg	BC010327	immunoglobulin heavy chain (gamma polypeptide)	-	90.1
Igh-3	BC092269	immunoglobulin heavy chain 3 (serum IgG2b)	-	62.3
Igl-J2	BC119450	immunoglobulin lambda chain, joining region 2	-	34.7
Igl-V1	BC119450	immunoglobulin lambda chain, variable	-	25
Igk	ENSMUST00000103320	immunoglobulin kappa chain complex	-	22
Igk-V28	V00810	immunoglobulin kappa chain variable 28 (V28)	-	13.3
Igh-1a	BC110346	immunoglobulin heavy chain 1a (serum IgG2a)	-	13.2
Igj	BC006026	immunoglobulin joining chain	-	17
Igk-V21	D29670	immunoglobulin kappa chain variable 21 (V21)	-	8.2
Igk-C	BC080787	immunoglobulin kappa chain, constant region	-	7.4
Igh	BC011342	immunoglobulin heavy chain complex	-	3.7
Igk-V1	AB001737	immunoglobulin kappa chain variable 21 (V21)	-	2.6
Igk-V38	M18237	immunoglobulin kappa chain variable 38(V38)	-	2.4

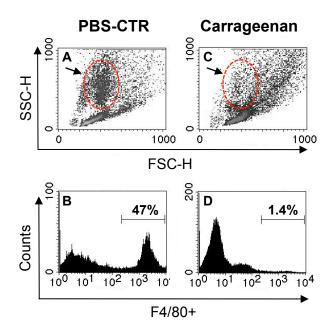
Complement system and complement receptors

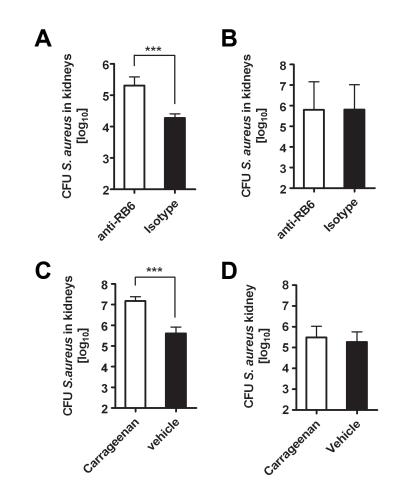
C3	NM_009778	complement component 3	4.4	3.8
C4b	NM_009780	complement component 4B	4.2	3.7
Clqa	NM_007572	complement component 1, q subcomponent, alpha polypeptide	-	5.2
Clqb	NM_009777	complement component 1, q subcomponent, beta	-	4.9

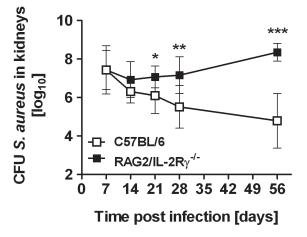
C1qc	NM_007574	polypeptide complement component 1, q	-	5.9
C3ar1	NM_009779	subcomponent, C chain complement component 3a receptor	-	3.3
C5ar1	NM_007577	complement component 5a receptor 1	-	3
Fc receptors				
Fcgr1	NM_010186	Fc receptor, IgG, high affinity I	2.3	7
Fcgr2b	NM_001077189	Fc receptor, IgG, low affinity IIb	-	2
Fcgr3	NM_010188	Fc receptor, IgG, low affinity III	2.5	8
Fcgr4	NM_144559	Fc receptor, IgG, low affinity IV	2.4	5.2
Fcer1g	NM_010185	Fc receptor, IgE, high affinity I, gamma polypeptide	-	6
Toll-like receptor	rs			
Tlr1	AF316985	toll-like receptor 1	-	4.2
Tlr2	NM_011905	toll-like receptor 2	-	3.3
Tlr4	NM_021297	toll-like receptor 4	2.1	2.1
Tlr13	NM_205820	toll-like receptor 13	-	2.4
C-type lectin reco	eptors			
Clec4d	NM_010819	C-type lectin domain family 4, member d	5.9	21
Clec4e	NM_019948	C-type lectin domain family 4, member e	4.9	16.5
Clec2h	NM_053165	C-type lectin domain family 2, member h	- 4.9	3
Clec4a2	NM_011999	C-type lectin domain family 4, member a2	-	5.3
Clec4a3	NM_153197	C-type lectin domain family 4, member a3	-	7
Clec4n	NM_020001	C-type lectin domain family 4, member n	-	12
Clec5a	NM_001038604	C-type lectin domain family 5, member a	-	2.2
Clec7a	NM_020008	C-type lectin domain family 7, member a	-	8.4

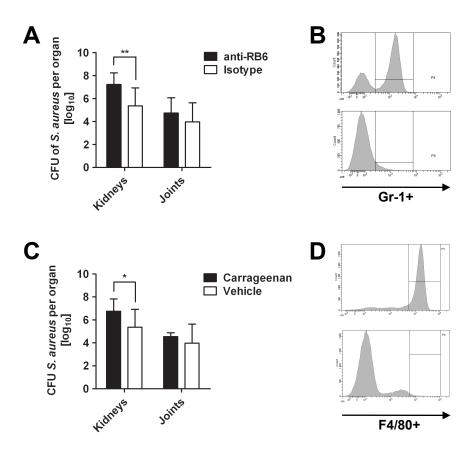
Histocompatibility complex


H2-D1	NM_010380	histocompatibility 2, D region locus 1 (Class I)	3	2.1
H2-K1	NM_001001892	histocompatibility 2, K1, K region (class I)	3.2	2.4
H2-M3	NM_013819	histocompatibility 2, M region locus 3 (class I)	-	2.1
H2-Q7	X05389	histocompatibility 2, Q region locus 7 (class I)	-	2.4
H2-Aa	NM_010378	histocompatibility 2, class II antigen A, alpha	-	3.1
H2-Ab1	NM_207105	histocompatibility 2, class II antigen A, beta	2.8	3.7
H2-DMa	BC001996	histocompatibility 2, class II, locus DMa	-	4.7
H2-DMb1	NM_010387	histocompatibility 2, class II, locus Mb1	2.1	3.8
H2-DMb2	BC052864	histocompatibility 2, class II, locus Mb2	2.1	5.6
H2-Eb1	NM_010382	histocompatibility 2, class II antigen E beta	-	3.8


Other immune response-related genes


S100a4	NM_011311	S100 calcium binding protein A4	-	2.86
S100a8	NM_013650	S100 calcium binding protein A8 (calgranulin A)	52.5	78.4
S100a9	NM_009114	S100 calcium binding protein A9 (calgranulin B)	51.9	96.4
Saa1	NM 011314	serum amyloid A 1	47.5	8.3
Saa2	NM_011314	serum amyloid A 2	9.5	2.5
Saa3	NM_011315	serum amyloid A 3	30	58.5
Ptgs2	NM_011198	prostaglandin-	14	6.5
		endoperoxide synthase 2		
Socs3	NM_007707	suppressor of cytokine signaling 3	9.8	4.6
Tcrg-V3	ENSMUST00000103558	T-cell receptor gamma, variable 3	-	6.7
Serpina1a	NM_009243	serine (or cysteine) peptidase inhibitor, clade A, member 1a	2.5	-
Serpina1b	NM_009244	serine (or cysteine) preptidase inhibitor, clade A, member 1b	3	-


Serpina3g	NM_009251	serine (or cysteine) peptidase inhibitor, clade A, member 3G	5	11.6
Serpina3m	NM_009253	serine (or cysteine) peptidase inhibitor, clade A, member 3M	3.1	-
Serpina3n	NM_009252	serine (or cysteine) peptidase inhibitor, clade A, member 3N	9	-
Serpina10	NM_144834	serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 10	7.2	-
Arg1	NM_007482	arginase 1	5.3	19.1
Arg2	NM_009705	arginase type II	3.8	-
Tnfrsflb	NM_011610	tumor necrosis factor receptor superfamily, member 1b	-	3
Tnfrsf12a	NM_013749	tumor necrosis factor receptor superfamily, member 12a	2.7	-
Tnfrsf13b	AK155178	tumor necrosis factor receptor superfamily, member 13b	-	2.4
Tnfrsf21	NM_178589	tumor necrosis factor receptor superfamily, member 21	3.1	-
Tnfaip3	NM_009397	tumor necrosis factor, alpha-induced protein 3	-	2.4
Tnfaip8l2	NM_027206	tumor necrosis factor, alpha-induced protein 8-like 2	-	3.4
Tnfsf13b	NM_033622	tumor necrosis factor (ligand) superfamily, member 13b	-	2.5
Cadm1	NM_001025600	cell adhesion molecule 1	-	2.2
Csf2rb	NM_007780	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte- macrophage)	2.3	5.1
Csf2rb2	NM_007781	colony stimulating factor 2 receptor, beta 2, low-affinity (granulocyte- macrophage)	2.1	3.5
Csf3r	NM_007782	colony stimulating factor 3 receptor 13	-	3.5


		(granulocyte)		
Icam1	NM_010493	intercellular adhesion molecule 1	2.1	2.5
Ptger4	BC009023	prostaglandin E receptor 4 (subtype EP4)	-	2.2
Trem1	NM_021406	triggering receptor expressed on myeloid cells 1	2	3
Trem2	NM_031254	triggering receptor expressed on myeloid cells 2	-	3
Vcam1	NM_011693	vascular cell adhesion molecule 1	-	4.2
Ncf1	NM_010876	neutrophil cytosolic factor 1	2.1	4.3
Ncf2	NM_010877	neutrophil cytosolic factor 2	-	2.7
Ncf4	NM_008677	neutrophil cytosolic factor 4	-	3.1

