Supplementary information

Supplementary Figure legends:

Figure S1. APP expression and processing in APPPS1⁺ mice is not affected by *Prnp* genotypes. APP expression and processing by secretases were similar in 2-month-old APPPS1⁺*Prnp*^{+/+}, APPPS1⁺*Prnp*^{+/0} and APPPS1⁺*Prnp*^{0/0} mice. (*A*) Full-length APP and C-terminal fragments (α - β CTF) are not affected by *Prnp* genotype. Left panel: representative SDS-PAGE followed by immunoblotting using an APP C-terminal antibody detecting full-length APP and α - β CTF; actin was used as loading control. Right panel: quantitation of chemiluminescence for APP, α -CTF and β -CTF. (*B*) Human soluble A β_{42} levels as assessed by ELISA. Each symbol indicates a mouse.

Figure S2. Genetic background associates with differences in insoluble $A\beta_{42}$ levels in APPPS1⁺ mice. APPPS1⁺ mice (on a C57B/6 background) were crossed with *Prnp*^{o/o} mice (on a mixed C57BL/6 and 129/Sv background) to generate F1 and F2 mice as depicted in the pedigree. Insoluble $A\beta_{42}$ levels are plotted against the number of 129/Sv specific microsatellite markers. Each symbol denotes a mouse. Average ± standard deviation for each group is displayed as well.

Figure S3. Overexpression of PrP in APPPS1⁺ mice. Expression of PrP^{C} in brains from APPPS1⁺*Prnp*^{+/+}, APPPS1⁺*tg*a20^{tg/-}*Prnp*^{o/o} and APPPS1⁺*tg*a20^{-/-}*Prnp*^{+/o} mice were analyzed by ELISA. Each symbol indicates a mouse. Significance was determined by one-way ANOVA **p*< 0.05.

Figure S4. Recombinant PrP binds synthetic $A\beta_{42}$ through its amino proximal domain. (*A*) SDS-PAGE followed by protein blotting with an anti-human A β (6E10) antibody was used to characterize A β_{42} preparations (20, 10 or 5 ng of synthetic protein in each lane) for the experiments (B-D). (*B*) Titration of human A β_{42} onto immobilized recombinant PrP (recPrP₂₃₋₂₃₁) obtained by ELISA showed binding of recPrP₂₃₋₂₃₁ to A β_{42} . (*C*) Binding of human A β_{42} to recPrP₁₂₁₋₂₃₁ was reduced in presence of the POM2 and POM3 antibodies against the N-proximal region of PrP^{C} . The epitope of POM2 lies within the octapeptide repeat region of PrP^{C} , giving rise to four binding sites between residues 58 and 88. The epitope recognized by POM3 corresponds to amino acids 95-100 of mouse PrP. POM2, POM3, and IgG1 isotype control were utilized at different concentrations (100nM, 10nM, 1nM). Values are averages ± SD. Significance was determined by one-way ANOVA ***p < 0.001. (*D*) Comparison between the binding curves for human A β_{42} to immobilized recPrP₂₃₋₂₃₁ or truncated recPrP₁₂₁₋₂₃₁. Removal of the N-terminal region, as in recPrP₁₂₁₋₂₃₁, prevented binding to A β_{42} .

Figure S5. Amyloid pathology and associated inflammatory response. Hippocampi of 4month-old wild-type mice (1st row) and various APPPS1 mice (rows 2-5). The APPPS1 mice displayed similar degree of amyloid deposition, microglial activation, and astrocytosis. A 12month-old APPPS1⁺ $tga20^{tg/-}Prnp^{+/o}$ mouse (bottom row) showed more pronounced amyloid deposition and associated inflammatory responses. HE: hematoxilin/eosin; Iba1: microglial marker; GFAP: glial fibrillary acidic protein, a marker of reactive astrocytes. Scale bar: 500 µm.

Figure S6. Crossing of genetically modified mice used in this study. A representative pedigree showing intercrossing of several mutant mice is depicted. Grey scale indicates different levels of PrP^C. Brown symbol: designate expression of anchorless, soluble PrP. The orange border denotes the presence of APP/PS1 transgenes. Parallel lines indicate brothersister crossing. APPPS1⁻ mice are not represented (with one exception) in the pedigree for clarity, but were included as controls in the actual experiments. *Prnp*^o and *Prnp*⁻ denote by convention the "Zurich-I" and "Edbg" knockout alleles of *Prnp*, respectively.

Α

