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Supporting Text S1

1 RS-HDMR Algorithmic Modifications

High levels of noise, low sample size, and highly correlated variables are frequent problems

when dealing with experimental data describing biological systems. These issues restrict

the ability to identify exact IO relationships, particularly with respect to higher order

cooperative interactions. Consequently, several algorithmic adjustments of RS-HDMR

are made to address such ill-posed problems. RS-HDMR component functions extending

above third-order are commonly insignificant in applications to most natural systems,

especially those described by noisy data and sparse sampling coverage [1]. For this ap-

plication, only first, second, and third-order RS-HDMR component functions were deter-

mined. The component functions are approximated as optimally weighted orthonormal

polynomial expansions, with coefficients calculated simultaneously through least-squares

regression [2]. Finally, a model reduction (MR) method is employed, such that only input

variables which significantly increase the RS-HDMR fitting quality, as measured through

a statistical F-test, are included in the calculation of the RS-HDMR IO-mappings [3].

These modifications present RS-HDMR within a computationally tractable framework

and strengthen the robustness of the results with respect to high levels of noise and

correlation among the input variables, thereby reducing problems of overfitting.

A close relation exists between the problems of addressing strong correlation amongst

the input variables and discerning significant versus insignificant network connections in

network identification. Correlation amongst the input variables that are tightly intercon-

nected can arise and often leads to skewed and inflated sensitivity analysis results. In

addition, distinguishing between significant and insignificant IO connections becomes in-

creasingly difficult when the input variables are strongly correlated. The MR modification
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to the RS-HDMR algorithm specifically addresses these issues. Here we apply RS-HDMR

analysis with and without MR to a simple IO model that is subject to various sampling

and structural perturbations to examine the effect of MR in addressing ill-posed problems

typical with biological systems.

1. Model Overview. The model consists of ten inputs, x = x1, x2, ...xn(n = 10) (Fig.

S1). The inputs affect a single output y = f(x) through independent and cooperative non-

linear IO connections. For clear interpretation of the RS-HDMR analysis results, these

IO connections take a form similar to the non-linear polynomials that the RS-HDMR

algorithm approximates such IO connections as having. The model has the following

form, where αi, βij, ai, bi, and ci are constants defined in Table S1:
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A priori knowledge of the model and its coefficients allows for exact calculation of the cor-

responding HDMR component function sensitivity indices, without resorting to sampling

and Monte-Carlo integration. These calculated sensitivity indices are shown in Fig. S2

and compared to the results calculated from various RS-HDMR algorithms and sampling

efforts described below.

2. Weighted Network Connectivity. IO network interactions of various significance

were used in the model in order to analyze the RS-HDMR algorithm’s ability to identify

and discern strong network connections from insignificant ones. The strength of network

connectivities were characterized before the RS-HDMR analysis through direct calculation

of sensitivity indices from the model (Fig. S2). The four inputs (x1 − x4) have relatively
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strong first-order interaction with the output, with sensitivity indices all lying above 0.05.

Sensitivity indices for the first-order interactions of the remaining six inputs (x5−x10) all

fall below 0.001. The model contains one strong second-order IO interaction between x2

and x5, which has a corresponding sensitivity index of 0.13.

3. Direct and Indirect Connections with x9. We modified the topology of the model to

include indirect or both direct and indirect IO interactions between x9 and the output in

order to assess the RS-HDMR algorithm’s ability to identify direct (rather than indirect)

network connections as significant (Fig. S2). For the indirect connection, x9 is sampled as

a function of x2 (using either a bivariate normal distribution or correlated Latin hypercube

sampling), which has strong direct connection to the output. Thus x9 is only related to

the output through x2. As another topological modification, a strong direct connection

between x9 and the output is added for comparative purposes. This added IO connection

follows the general non-linear polynomial form described in Eq. 1. Results of the RS-

HDMR analysis describing various network topologies may then be compared in order to

further ascertain if RS-HDMR can distinguish between direct and indirect IO connections.

Sample sizes of 7000 data points were used in the RS-HDMR analysis of the model

under all conditions. Input data points were generated from a uniform distribution be-

tween 0 and 1. Outliers falling more than two standard deviations from the mean were

excluded from analyzed data sets.

2 Results from Model Analysis

1. Discerning between Direct and Indirect IO Connections. RS-HDMR sensitivity anal-

ysis, both with and without MR, was performed using data describing the model under

several topological perturbations. As an initial control, the model was first observed un-

der good sampling conditions, described by uncorrelated, randomly sampled data points.
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Under these conditions, both algorithms produce relatively similar results. However, re-

sults from the RS-HDMR sensitivity analyses diverge between the algorithms, with and

without MR, upon introduction of significant correlation (or multi-collinearity) amongst

the sampled data points. Under the control conditions, neither version of RS-HDMR

(with or without MR) identified x9 to be a significant input variable. Under conditions of

added correlation, however, RS-HDMR without MR describes first-order connection with

x9 as significant. In contrast, RS-HDMR with MR succeeds in identifying the relationship

as indirect. As a test of positive selection, a strong direct connection between x9 and the

output was added to the model in addition to the indirect connection with x9. Both

RS-HDMR, with and without MR, are successful in capturing x9 as a significant input.

Biased sensitivity analysis, arising from correlated input variables and overfitting, can

also be observed through analysis of the distributions of the sensitivity indices. In general,

RS-HDMR without MR (as compared to RS-HDMR with MR) tends to essentially “flat-

ten” the distribution of sensitivity indices for a given IO model. The observed range and

variance of the sensitivity indices of the component functions in a given model decreases by

overfitting low-significance network connections and consequently under-fitting the most

significant interactions. This is particularly relevant with respect to network structure

identification, where the object is to distinguish significant, “direct” network connections

from insignificant network interactions. In addition to the model observations, differences

in the calculated sensitivity index distributions are also evident from experimental data

analysis. Fig. S3 shows RS-HDMR with MR to be much more effective in characterizing

network interactions as either strong or weak. Only one of the network interactions from

individual data set analysis (See Methods) was calculated by RS-HDMR with MR to have

a sensitivity index between zero and 0.15, and the range of observed sensitivity indices

is from 1.02 (slight overfitting can result in Si > 1.0) to zero. RS-HDMR without MR,

however, shows a much flatter distribution of sensitivity indices, ranging from only 0.2 to
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roughly zero.

2. Interpolative and Predictive Accuracy. In addition to biased sensitivity analysis,

strong correlation amongst the input variables can lead to problems of overfitting and de-

creased interpolative and predictive accuracy. Over fitting also can arise under conditions

of noisy and sparse sampling. As with network structure identification, these problems

are only amplified when calculating higher-order RS-HDMR functions. Fig. S4 shows

the difference in interpolative accuracy between second-order RS-HDMR analysis with

and without MR, fitting data from the model with “Indirect Connection to x9.” Fig. S4

demonstrates that MR significantly increases RS-HDMR fitting accuracy. In this appli-

cation, the residual variance from results using RS-HDMR decreases by over 95% upon

implenting MR.

3 Multivariate Individual-Cell Data

Human primary naive CD4+ T-cells were fixated after 15 minutes exposure to exogenous

signaling cues and perturbation reagents, as described in Sachs et al. Flow cytometry

was then used to simultaneously measure eleven different phospholipid and phospho-

rylated protein levels in individual cells [Akt (S473), Jnk (T183 and Y185), Raf (S259),

mitogen-activated protein kinases (MAPKs) Erk1 and Erk2 (T202 and Y204), p38 MAPK

(T180 and Y182), Mek1 and Mek2 (S217 and S221), protein kinase A (PKA) substrate

phosphorylation, phospholipase Cγ (PLCγ Y783), PKC (S660), phosphatidylinositol 4,5-

bisphosphate (PIP2), and phosphatidylinositol 3,4,5-triphosphate (PIP3)] .

Table S2 summarizes the employed perturbative conditions in the nine data sets used

for this analysis. See Sachs et al for details regarding specific stimulating and inhibiting

reagents used in the perturbation experiments, as well as protein and phosphorylation

sites measured. Cytometry measurements from individual cells make up a total of 5400
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eleven-dimensional data points from nine different data sets, with each set containing

cell measurements observed under a unique perturbative condition. Two data sets are

for general stimulatory conditions (d1 and d2). The remaining seven data sets are under

protein-specific perturbative conditions.

Each of the nine data sets were analyzed individually. Thirteen pairs of data sets were

also analyzed to examine the effect of the exogenous perturbations. Data sets d3–d9, with

the exception of d7, were paired with each of the two data sets (d1 and d2) describing the

network under general stimulating conditions, for a total of twelve pairings. Data set d7

was excluded because the perturbation does not inhibit any of the measured species to

the same degree of specificity as the other perturbations. The pairing of data sets d8 and

d4, where PKC is activated and inhibited, respectively, constitutes the thirteenth pairwise

comparison data set.

Protein level data was transformed to a logarithmic scale and linearly normalized such

that for a measured species, xi, we have 0 ≤ xi ≤ 1 for all species in a given data set

used for RS-HDMR analysis. RS-HDMR analysis was performed on 70% of the total data

from each data set. The remaining 30% was used to test the accuracy of the predictive

IO models. For each data set, multiple (10) subsets were used to iteratively analyze the

data in order to validate the sensitivity analysis. Outlier data points with values falling

greater than two standard deviations from the mean were excluded from analysis. The

experimental data reported in Sachs et al was obtained online [4].
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