	α -L-idose			β-L-idose	
Pucker	%	G	Pucker	%	G
1C4	85.0768	0.10	1C4	99.5250	0.00
4C1	5.1057	1.76	4C1	0.2935	3.46
B14	3.6629	1.96	551	0.0951	4.13
5 \$1	1.8638	2.36	B14	0.0216	5.01
351	1,6036	2.45	25B	0.0136	5.28
250	1 0151	2 72	14B	0.0116	5 37
162	0.5249	2.72	250	0.0110	5.57 E 46
135	0.3348	5.10	230	0.0101	5.40
14B	0.4002	3.27	185	0.0053	5.84
B30	0.3350	3.38	351	0.0046	5.92
25B	0.1395	3.90	153	0.0036	6.07
1\$5	0.0992	4.10	2H1	0.0036	6.07
E2	0.0276	4.86	B30	0.0024	6.31
1HO	0.0231	4.97	5HO	0.0018	6.48
1E	0.0226	4.98	2 E	0.0013	6.67
3H2	0.0202	5.04	5E	0.0009	6.89
1H2	0.0181	5.11	5H4	0.0009	6.89
3OB	0.0129	5.31	3E	0.0008	6.96
2H1	0.0084	5.57	1HO	0.0007	7.04
EO	0.0062	5.75	3H2	0.0007	7.04
4H3	0.0044	5.95	E4	0.0006	7.13
3E	0.0042	5.98	3H4	0.0006	7.13
E1 25	0.0034	6.10	EU	0.0006	7.13
2E	0.0027	0.24 6 55	51 213	0.0003	7.54
F3	0.0010	6.67	2H3 1H2	0.0003	7.54
ະວ ວມວ	0.0013	6.67	102	0.0003	7.54 0.10
3H4	0.0013	6.77	F2	0.0001	8.19
4E	0.0011	6.83	OS2	0.0000	-
5HO	0.0007	7.04	B25	0.0000	-
OH5	0.0005	7.24	30B	0.0000	-
E5	0.0004	7.37	OH5	0.0000	-
OH1	0.0004	7.37	E5	0.0000	-
5H4	0.0004	7.37	4H5	0.0000	-
E4	0.0004	7.37	4E	0.0000	-
4H5	0.0002	7.78	4H3	0.0000	-
B25	0.0001	8.19	OE	0.0000	-
OE	0.0001	8.19	E3	0.0000	-
5E	0.0001	8.19	OH1	0.0000	-

	α -L-idose			β-L-idose	
Pucker	%	G	Pucker	%	G
1C4	83.8761	0.10	1C4	99.3885	0.00
4C1	7.4671	1.54	4C1	0.4079	3.26
B14	2.7886	2.12	551	0.0874	4.18
551	1.8636	2.36	25B	0.0215	5.01
3S1	1.2563	2.60	B14	0.0203	5.04
250	1.1235	2.66	250	0.0191	5.08
153	0.5407	3.10	14B	0.0187	5.09
_00 B30	0 3525	3 35	153	0.0025	5 56
148	0.3323	2 27	B20	0.00057	5.90
140	0.3413	2.27	351	0.0037	5.00
258	0.1729	3.77	351	0.0048	5.90
185	0.0692	4.31	185	0.0041	5.99
E2	0.0216	5.01	2H1	0.0032	6.14
1HO	0.0211	5.02	3H2	0.0014	6.63
3H2	0.0193	5.07	3E	0.0013	6.67
1E	0.0191	5.08	5HO	0.0009	6.89
1H2	0.0136	5.28	5E	0.0008	6.96
3OB	0.0115	5.38	3H4	0.0008	6.96
2H1	0.0082	5.58	2 E	0.0007	7.04
EO	0.0051	5.86	E4	0.0007	7.04
4H3	0.0044	5.95	EO	0.0007	7.04
3E	0.0036	6.07	1HO	0.0007	7.04
2H3	0.0034	6.10	E1	0.0005	7.24
E1	0.0033	6.12	5H4	0.0005	7.24
E3	0.0032	6.14	E2	0.0005	7.24
2 E	0.0032	6.14	2H3	0.0004	7.37
OS2	0.0013	6.67	E3	0.0002	7.78
4E	0.0013	6.67	1H2	0.0001	8.19
E5	0.0011	6.77	1E	0.0001	8.19
5HO	0.0009	6.89	OS2	0.0000	-
3H4	0.0006	7.13	B25	0.0000	-
4H5	0.0005	7.24	30B	0.0000	-
5H4	0.0005	7.24	OH5	0.0000	-
E4	0.0005	7.24	E5	0.0000	-
OH5	0.0003	7.54	4H5	0.0000	-
OE	0.0002	7.78	4 E	0.0000	-
OH1	0.0002	7.78	4H3	0.0000	-
B25	0.0001	8.19	OE	0.0000	-
5E	0.0001	8.19	OH1	0.0000	-

	α -L-idose			β-L-idose	
Pucker	%	G	Pucker	%	G
1C4	83.5423	0.11	1C4	99.7812	0.00
4C1	7.7207	1.52	4C1	0.1318	3.93
B14	2,9498	2.09	551	0.0353	4.71
551	1 8320	2 37	25B	0.0085	5 56
261	1.0520	2.57	250	0.0005	5.50
551	1.5710	2.54	230	0.0076	5.02
250	1.0413	2.71	148	0.0071	5.66
153	0.5036	3.14	B14	0.0066	5.71
14B	0.3321	3.38	153	0.0039	6.02
B30	0.3209	3.40	1\$5	0.0029	6.20
25B	0.1578	3.83	B3O	0.0027	6.24
1\$5	0.0749	4.27	351	0.0025	6.28
1HO	0.0236	4.95	5НО	0.0017	6.51
E2	0.0217	5.00	2H1	0.0015	6.59
1E	0.0187	5.09	3E	0.0011	6.77
3H2	0.0184	5.10	5E	0.0008	6.96
3OB	0.0136	5.28	5H4	0.0008	6.96
1H2	0.0127	5.32	3H2	0.0007	7.04
2H1	0.0075	5.63	2 E	0.0006	7.13
EO	0.0052	5.85	E4	0.0006	7.13
4H3	0.0047	5.91	EO	0.0005	7.24
E1	0.0042	5.98	E2	0.0005	7.24
2 E	0.0041	5.99	3H4	0.0004	7.37
2H3	0.0039	6.02	30B	0.0002	7.78
3E	0.0033	6.12	1HO	0.0002	7.78
E3	0.0031	6.16	E1	0.0001	8.19
4E	0.0018	6.48	1H2	0.0001	8.19
OS2	0.0015	6.59	1E	0.0001	8.19
4H5	0.0011	6.77	OS2	0.0000	-
E5	0.0006	7.13	B25	0.0000	-
OH5	0.0005	7.24	OH5	0.0000	-
5HO	0.0005	7.24	E5	0.0000	-
E4	0.0005	7.24	4H5	0.0000	-
3H4	0.0005	7.24	4 E	0.0000	-
OE	0.0003	7.54	4H3	0.0000	-
OH1	0.0003	7.54	OE	0.0000	-
5H4	0.0003	7.54	E3	0.0000	-
B25	0.0002	7.78	OH1	0.0000	-
5E	0.0002	7.78	2H3	0.0000	-

	α -L-idose			β-L-idose	
Pucker	%	G	Pucker	%	G
1C4	92.3800	0.05	1C4	98.6260	0.01
4C1	5.7121	1.70	4C1	1.2204	2.61
B30	0.5734	3.06	551	0.0406	4.63
153	0.3761	3.31	153	0.0227	4.98
250	0 3418	3 37	580	0.0112	5 39
551	0.2542	2 5/	B14	0.0111	5.00
551	0.2342	2.05	D14	0.0111	5.40
B14	0.1289	3.95	B3O	0.0105	5.43
14B	0.0830	4.21	14B	0.0094	5.50
1HO	0.0190	5.08	EO	0.0074	5.64
3 \$1	0.0187	5.09	250	0.0072	5.66
1\$5	0.0179	5.12	2E	0.0054	5.83
EO	0.0164	5.17	5E	0.0052	5.85
25B	0.0144	5.25	1\$5	0.0045	5.94
1E	0.0116	5.37	2H3	0.0036	6.07
2H3	0.0095	5.49	25B	0.0030	6.18
2 E	0.0086	5.55	3S1	0.0027	6.24
E3	0.0084	5.57	2H1	0.0024	6.31
2H1	0.0059	5.77	E3	0.0020	6.42
5HO	0.0051	5.86	5H4	0.0010	6.83
4H3	0.0048	5.90	4H3	0.0009	6.89
3OB	0.0028	6.22	1HO	0.0009	6.89
1H2	0.0021	6.39	3H2	0.0006	7.13
E2	0.0017	6.51	30B	0.0003	7.54
E1	0.0010	6.83	1H2	0.0002	7.78
5E	0.0009	6.89	OS2	0.0001	8.19
3H2	0.0004	7.37	B25	0.0001	8.19
4 E	0.0003	7.54	4E	0.0001	8.19
4H5	0.0002	7.78	1E	0.0001	8.19
OS2	0.0001	8.19	E4	0.0001	8.19
OH1	0.0001	8.19	3H4	0.0001	8.19
5H4	0.0001	8.19	E1	0.0000	-
3E	0.0001	8.19	OH5	0.0000	-
B25	0.0000	-	E5	0.0000	-
OH5	0.0000	-	4H5	0.0000	-
E5	0.0000	-	OE	0.0000	-
OE	0.0000	-	OH1	0.0000	-
E4	0.0000	-	3E	0.0000	-
3H4	0.0000	-	E2	0.0000	-

		TIP	'3P	TII	P4P	TIP4	P-EW
-		AVE	STDEV	AVE	STDEV	AVE	STDEV
ϑ°	α - ¹ C ₄	168.6	5.9	168.8	5.8	168.7	5.8
ϑ°	β- ¹ C ₄	170.8	4.9	170.5	4.9	170.5	5.0
ϑ°	α - ⁴ C ₁	11.4	6.2	11.5	6.3	11.5	6.3
ϑ°	β- ⁴ C ₁	14.5	7.4	14.2	7.0	14.2	7.4
φ°	α - ¹ C ₄	134.4	70.6	137.7	70.2	137.7	70.2
φ°	β- ¹ C ₄	195.7	80.1	193.8	76.6	193.9	76.5
φ°	α - ⁴ C ₁	160.4	103.7	156.8	100.0	156.2	101.1
φ°	β- ⁴ C ₁	150.5	56.2	151.2	54.4	150.7	56.2
Q	α - ¹ C ₄	0.53	0.04	0.53	0.04	0.53	0.04
Q	β- ¹ C ₄	0.57	0.04	0.57	0.04	0.57	0.04
Q	α- ⁴ C ₁	0.54	0.04	0.54	0.05	0.54	0.04
Q	β- ⁴ C ₁	0.53	0.04	0.53	0.04	0.53	0.04

S5: Averages and standard deviations of computed Cremer-Pople parameters (chair-puckers)

S6: Hydroxymethyl rotamer state populations (%), calculated and experimental (EXPT)

Isomer	Model	Anomer	T (<i>tg</i>)	G+ (<i>gt</i>)	G- (<i>gg</i>)
L	TIP3P	α	17	14	69
L	TIP3P	β	18	8	75
L	TIP4P	α	16	23	61
L	TIP4P	β	17	18	65
L	TIP4P-EW	α	16	23	61
L	TIP4P-EW	β	17	18	65
D	EXPT	α	24	76	0
D	EXPT	β	29	67	4

*gt and gg definitions are reversed in the L-/D-isomers

Estimated experimental error was ±5%

Average populations were calculated from ten 1 μ s subsets, standard deviations were all <= 1%

<u>3D-definitions of hydroxymethyl conformations (α -L-idopyranoside):</u>

<u>S7: Expected pyroanse ring vicinal couplings in canonical chair puckers of α - and β -L-idose</u>

α	¹ C ₄	⁴ C ₁
J _{1,2}	g	t
J _{2,3}	g	t
J _{3,4}	g	t
J _{4,5}	g	g

g=gauche

t=trans

β	¹ C ₄	⁴ C ₁
J _{1,2}	g	g
J _{2,3}	g	t
J _{3,4}	g	t
J _{4,5}	g	g

S8: Two-site models

			α-id	lose	β-id	ose
Model	Isomer	Karplus	⁴ C ₁	¹ C ₄	⁴ C ₁	¹ C ₄
Simulation	L	n/a	5	85	0	100
Rigid	L	Ref. 24	61	39	26	74
Flexible	L	Ref. 24	65	35	24	76

Rigid models:

used "ideal" chairs, ring torsions set to $\pm 60^{\circ}$, all other atoms relaxed using MM

Flexible model:

used all ${}^{4}C_{1}$ (θ <30) or ${}^{1}C_{4}$ (θ >150) chairs from the TIP3P simulations

<u>S9: Chemical shifts for synthesized D isomers of compounds 1 and 2</u>

750 MHz	¹ H chemical shift (ppm)									
Anomer	H1	H2	H3	H4	H5	H6	H6'	OCH ₃		
α	4.69	3.53	3.73	3.75	4.09	3.82	3.79	3.45		
β	4.74	4.09 3.09 3.09 3.08 3.66 3.99 3.84 3.79								

150 MHz	¹³ C chemical shift (ppm)							
Anomer	C1	C1 C2 C3 C4 C5 C6 O						
α	102.66	71.96	72.74	71.37	72.37	61.31	57.16	
β	101.63	70.88	71.09	69.91	76.72	62.68	58.15	

The estimated error in 1 H chemical shift values is ± 0.002 ppm

Computed forward $({}^{1}C_{4} \rightarrow {}^{4}C_{1})$ and backward $({}^{4}C_{1} \rightarrow {}^{1}C_{4})$ puckering rates are illustrated

S14: Classification of the 36 cannonical non-chair puckers in terms of ϑ and φ angles

4C1	-1	<	ϑ°	<	36	&	-16	<	φ°	<	345
OE	36	<	ϑ°	<	72	&	-16	<	φ°	<	15
OH1	36	<	ϑ°	<	72	&	15	<	φ°	<	45
E1	36	<	ϑ°	<	72	&	45	<	φ°	<	75
2H1	36	<	ϑ°	<	72	&	75	<	φ°	<	105
2 E	36	<	ϑ°	<	72	&	105	<	φ°	<	135
2H3	36	<	ϑ°	<	72	&	135	<	φ°	<	165
E3	36	<	ϑ°	<	72	&	165	<	φ°	<	195
4H3	36	<	ϑ°	<	72	&	195	<	φ°	<	225
4E	36	<	ϑ°	<	72	&	225	<	φ°	<	255
4H5	36	<	ϑ°	<	72	&	255	<	φ°	<	285
E5	36	<	ϑ°	<	72	&	285	<	φ°	<	315
OH5	36	<	ϑ°	<	72	&	315	<	φ°	<	345
30B	72	<	ϑ°	<	108	&	-16	<	φ°	<	15
3S1	72	<	ϑ°	<	108	&	15	<	φ°	<	45
B14	72	<	ϑ°	<	108	&	45	<	φ°	<	75
5 \$1	72	<	ϑ°	<	108	&	75	<	φ°	<	105
25B	72	<	ϑ°	<	108	&	105	<	φ°	<	135
2SO	72	<	ϑ°	<	108	&	135	<	φ°	<	165
B30	72	<	ϑ°	<	108	&	165	<	φ°	<	195
153	72	<	ϑ°	<	108	&	195	<	φ°	<	225
14B	72	<	ϑ°	<	108	&	225	<	φ°	<	255
1\$5	72	<	ϑ°	<	108	&	255	<	φ°	<	285
B25	72	<	ϑ°	<	108	&	285	<	φ°	<	315
OS2	72	<	ϑ°	<	108	&	315	<	φ°	<	345
EO	108	<	ϑ°	<	144	&	-16	<	φ°	<	15
1HO	108	<	ϑ°	<	144	&	15	<	φ°	<	45
1E	108	<	ϑ°	<	144	&	45	<	φ°	<	75
1H2	108	<	ϑ°	<	144	&	75	<	φ°	<	105
E2	108	<	ϑ°	<	144	&	105	<	φ°	<	135
3H2	108	<	ϑ°	<	144	&	135	<	φ°	<	165
3E	108	<	ϑ°	<	144	&	165	<	φ°	<	195
3H4	108	<	ϑ°	<	144	&	195	<	φ°	<	225
E4	108	<	ϑ°	<	144	&	225	<	φ°	<	255
5H4	108	<	ϑ°	<	144	&	255	<	φ°	<	285
5E	108	<	ϑ°	<	144	&	285	<	φ°	<	315
5HO	108	<	ϑ°	<	144	&	315	<	φ°	<	345
1C4	144	<	ϑ°	<	180	&	-16	<	φ°	<	345

S15: Vicinal coupling calculations

	Δχ1	Δχ2	Δχ3	Δχ4	P1	P2	Р3	P4	Р5	P6
³ J ₁₋₂	1.30	1.30	1.30	0.40	13.24	-0.91	0.00	0.53	-2.41	0.27
³ J ₂₋₃	0.40	1.30	0.40	1.30	13.24	-0.91	0.00	0.53	-2.41	0.27
³ J ₃₋₄	1.30	0.40	1.30	0.40	13.24	-0.91	0.00	0.53	-2.41	0.27
³ <i>J</i> ₄₋₅	0.40	1.30	0.40	1.30	13.24	-0.91	0.00	0.53	-2.41	0.27

Paramaters used (for α - and β -anomers) in the Karplus equation (Ref. 24)

 ${}^{3}J_{HH} = P_{1} \cos^{2}\vartheta + P_{2} \cos\vartheta + P_{3} + \Sigma \Delta \chi_{i} \left[P_{4} + P_{5} \cos^{2}(\zeta_{i}\vartheta + P_{6} |\Delta \chi_{i}|)\right]$

 ζ_i is +1 or -1 depending on the substituent orientation (see ref. 24 for details)

Pyranose ring vicinal 1H-1H dihedrals

averages (θ°) and standard deviations (±) from the 10 μ s simulations

<u>TIP3P</u>

	c	x	β		
Torsion	θ°	±	θ°	±	
H1-H2	77	51	-54	11	
H2-H3	-80	37	-67	12	
H3-H4	73	34	67	11	
H4-H5	50	25	54	9	

TIP4P

	C	x	β		
Torsion	θ°	+	θ°	±	
H1-H2	64	69	-45	34	
H2-H3	-68	62	-57	41	
H3-H4	63	58	57	41	
H4-H5	40	41	46	33	

TIP4P-EW

	C	X		β
Torsion	θ°	±	θ°	±
H1-H2	65	70	-46	33
H2-H3	-68	62	-57	40
H3-H4	64	58	57	40
H4-H5	40	41	46	33

S16: GLYCAM11 paramaters for residue 0iA (α-L-idopyranose)

0iA

new atom type OA: endo-anomeric oxygen

0	0	0	0	-2	-1	0	Μ	DU	DUMM	1
0	0	0	1.522	-1	0	1	М	DU	DUMM	2
0	0	109.5	1.422	0	1	2	М	DU	DUMM	3
0.4405	-60	113.3	1.4	1	2	3	М	CG	C1	4
0	56.2	110.7	1.102	2	3	4	Е	H2	H1	5
-0.543	-66.3	107.9	1.435	2	3	4	М	OA	05	6
0.283	-59.5	114.3	1.434	3	4	6	Μ	CG	C5	7
0	60.8	109.1	1.105	4	6	7	Е	H1	H5	8
0.264	177.2	106.7	1.517	4	6	7	3	CG	C6	9
0	65.1	108.3	1.092	6	7	9	Е	H1	H61	10
0	177.1	108.8	1.093	6	7	9	Е	H1	H62	11
-0.678	-56.7	112.7	1.413	6	7	9	S	ОН	06	12
0.4205	-96	108.1	0.955	7	9	12	Е	НО	H6O	13
0.2625	-59	110.8	1.519	4	6	7	М	CG	C4	14
0	173.8	107.7	1.1	6	7	14	Е	H1	H4	15
-0.702	-66.6	110	1.43	6	7	14	S	ОН	04	16
0.432	6.1	109.2	0.958	7	14	16	E	НО	H40	17
0.2935	54.4	110.3	1.529	6	7	14	М	CG	C3	18
0	-173.5	109.2	1.101	7	14	18	Е	H1	H3	19
-0.733	67.3	106.9	1.421	7	14	18	S	ОН	03	20
0.439	-168.6	108.5	0.976	14	18	20	Е	НО	H3O	21
0.308	-53.4	111.6	1.524	7	14	18	В	CG	C2	22
0	172.2	110.2	1.105	14	18	22	Е	H1	H2	23
-0.734	-65.2	110.8	1.415	14	18	22	S	ОН	02	24
0.439	-44.9	110	0.957	18	22	24	Е	НО	H2O	25

S17: GLYCAM11 paramaters for residue 0iB (β -L-idopyranose)

0iB

new atom type OA: endo-anomeric oxygen

1	DUMM	DU	Μ	0	-1	-2	0	0	0	0
2	DUMM	DU	М	1	0	-1	1.522	0	0	0
3	DUMM	DU	М	2	1	0	1.422	109.5	0	0
4	C1	CG	М	3	2	1	1.4	113.3	180	0.469
5	H1	H2	Е	4	3	2	1.102	110	-60.7	0
6	C2	CG	М	4	3	2	1.529	109.7	180	0.221
7	H2	H1	Е	6	4	3	1.105	108.8	66	0
8	02	ОН	S	6	4	3	1.415	110	-59.2	-0.689
9	H2O	но	Е	8	6	4	0.957	110	-89.3	0.436
10	C3	CG	Μ	6	4	3	1.519	110.1	-173.1	0.3255
11	Н3	H1	Е	10	6	4	1.101	109.1	173.3	0
12	03	ОН	S	10	6	4	1.421	109.9	-65.8	-0.737
13	H3O	ΗΟ	Е	12	10	6	0.976	108.5	-172.4	0.4375
14	C4	CG	М	10	6	4	1.528	110.8	53.3	0.238
15	H4	H1	Е	14	10	6	1.1	108.7	-173.1	0
16	04	ОН	S	14	10	6	1.43	110.6	66.4	-0.707
17	H4O	НО	Е	16	14	10	0.958	109.2	60	0.432
18	C5	CG	М	14	10	6	1.435	110	-52.7	0.3165
19	H5	H1	Е	18	14	10	1.105	109.6	-66.3	0
20	05	OA	Е	18	14	10	1.412	112	54.9	-0.556
21	C6	CG	3	18	14	10	1.517	111.3	174.2	0.262
22	H61	H1	Е	21	18	14	1.092	108.9	-63.1	0
23	H62	H1	Е	21	18	14	1.093	108.3	55.9	0
24	06	ОН	S	21	18	14	1.413	112.7	172.7	-0.6755
25	H6O	НО	Е	24	21	18	0.955	108.1	58.1	0.421

S18: GLYCAM11 torsional paramaters for new atom type OA

Key:

DIV	factor by which torsion is divided										
BH/2	barrier height divided by a factor of 2										
РН	phase shift ar	phase shift angle in the torsional function (°)									
PN	torsional barr	rier periodicity									
	if PN is negative (identifies the next term) the absolute vaule is used										
Torsion	DIV	BH/2	РН	PN							
H2-CG-OA-CG	1	-1.20	0	1							
	1	0.10	0	2							
	1	0.02	0	3							
CG-CG-OA-CG	1	-0.70	0	1							
	1	-0.30	0	2							
	1	-0.33	0	3							
OE-CG-OA-CG	1	-0.25	0	1							
	1	-0.76	0	2							
	1	1.20		3							
OA-CG-CG-CG	1	0.19	0	1							
	1	-0.11	0	2							
	1	0.14	0	3							

