

Figure A.1. The electrostatic free energy (in k_bT) computed with the nonlinear Poisson-Boltzmann equation, F^{NLPBE} , of a spherical cavity of radius 20 Å and a central charge of –50e at concentrations of 2:1 salt, [MgCl₂], of 0, 0.01, 0.02, 0.05, and 0.1 M and Stern layer of width 1.5 Å is plotted against the logarithm of the concentration of 1:1 salt, [NaCl]. The dielectric constant of spherical cavity is 4 and the dielectric constant of the solvent is 78.5.

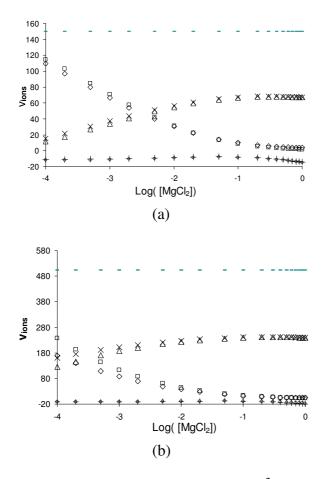


Figure A.2. The numbers of bound Mg^{2+} , Na^+ , and Cl^- ions (v_{Mg} , v_{Na} , and v_{Cl}) for a spherical cavity of radius 20 Å and a central charges of (a)-150e and (b)-500e in a mixed salt solution with an ion radius of 1.4 Å with [NaCl] = 0.1 M calculated with both the nonlinear Poisson-Boltzmann equation (Δ,\Box,o), and the size-modified Poisson-Boltzmann equation ($\times, \diamond, +$) are plotted as a function of [MgCl₂]. The NLPBE calculations were performed with a Stern layer of 1.4 Å. The ion radius is approximately equal to one half of *a*, the size of the lattice spacing used in the SMPBE theory. The dielectric constant of spherical cavity is 4 and the dielectric constant of the solvent is 78.5.

Volume integration

The volume integral in eq 27 can be evaluated in the limit $c_{bi} \rightarrow 0$ by first computing the volume integral, I, which is given by noting that because $\xi(r) \ge 0$ for all r, we can write another integral, I_u that is an upper bound on I:

This integration can be divided into two regions

$$\lim_{c_{bi}\to 0} I_{u} = \lim_{c_{bi}\to 0} \frac{k_{b}T}{a^{3}} \int_{\Gamma}^{R_{L}} d^{3}r\xi_{i}(r) + \lim_{c_{bi}\to 0} \frac{k_{b}T}{a^{3}} \int_{R_{L}}^{\infty} d^{3}r\xi_{i}^{LPB}(r)$$
(0)
= 0

where Γ is the boundary of the molecule and R_L is chosen far enough from the molecule so that for $R_L < r < \infty$, ξ_i can be approximated by the linear Poisson-Boltzmann equation. As $c_{bi} \rightarrow 0$, both terms in eq A1 go to zero, and *I* therefore goes to zero.