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Equation Chapter (Next) Section 1 

The Electrostatic Free Energy of SMPBE 
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Figure A.1.  The electrostatic free energy (in kbT) computed with the nonlinear 

Poisson-Boltzmann equation, NLPBEF ,  of a spherical cavity of radius 20 Å and a 

central charge of –50e at concentrations of 2:1 salt, [MgCl2], of 0, 0.01, 0.02, 0.05, 

and 0.1 M and Stern layer of width 1.5 Å is plotted against the logarithm of the 

concentration of 1:1 salt, [NaCl]. 
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   (b)     
 
Figure A.2. The numbers of bound Mg2+, Na+, and Cl- ions ( νMg, νNa, and νCl ) for a 

spherical cavity of radius 20 Å and central charges of (a)-150e and (b)-500e in a 

mixed salt solution with an ion radius of 1.4 Å with [NaCl] = 0.1 M calculated with 

both the nonlinear Poisson-Boltzmann equation ( ,∆ �,ο ), and the size-modified 

Poisson-Boltzmann equation (×,◊,+ ) are plotted as a function of [MgCl2].  The 

NLPBE calculations were performed with a Stern layer of 1.4 Å. 

 
 
 
 
 
 
 
 
 
 



Volume integration 
 
The volume integral in eq 27 can be evaluated in the limit 0

bi
c →  by first computing 

the volume integral, I , which is given by noting that because ( ) 0rξ ≥  for all r , we 

can write another integral, 
u

I  that is an upper bound on I: 

This integration can be divided into two regions 
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where Γ  is the boundary of the molecule and 
L

R  is chosen far enough from the 

molecule so that for 
L

R r< < ∞ , 
i
ξ  can be approximated by the linear Poisson-

Boltzmann equation.  As 0
bi

c → , both terms in eq A1 go to zero, and I  therefore 

goes to zero. 

 
 

 

Taylor series of volume-exclusion factor  
 
The volume exclusion factor ( )rξ  is defined from: 
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The NLPB equation is subtracted from SMPB equation in the solvent region 
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The Taylor expansion of equation on variables ( )
NL

ρ φ  and ( )ξ φ  around 
NL
φ  results in 
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The term ( )
NL

φ φ−  asymptotically goes to zero as 0a → .  If the higher order term 

3 2( ( )NLO a φ φ−  is ignored, the ansatz 3( ) ( ) ( )NL NLO a Fφ φ φ− =  serves  as the solution 

to the equation (A.5).  This form of solution gives the derivative of electrostatic 

potential w.r.t. a  as: 
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with 
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Note that for 0
NL
φ = , the 0φ =  and therefore ( 0) 0

NL
F φ = = .  

The Taylor series of volume-exclusion factor ( )rξ  around 
NL

φ φ=  is 
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Therefore it is valid that in the first order one could approximate the volume-

exclusion factor as 3( ) ( )r a f rξ = , where ( ) ( , 0)f r g r a= =  is a function independent 

of a . 


