Supporting Information
Equation Chapter (Next) Section 1

The Electrostatic Free Energy of SMPBE
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Figure A.1. The electrostatic free energy (in kyT) computed with the nonlinear

FMPPE - of a spherical cavity of radius 20 A and a

Poisson-Boltzmann equation,
central charge of —50e at concentrations of 2:1 salt, [MgCl,], of 0, 0.01, 0.02, 0.05,
and 0.1 M and Stern layer of width 1.5 A is plotted against the logarithm of the

concentration of 1:1 salt, [NaCl].
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Figure A.2. The numbers of bound Mg2+, Na®, and CI ions ( VMg, VNa, and vcp ) for a
spherical cavity of radius 20 A and central charges of (a)-150e and (b)-500¢ in a
mixed salt solution with an ion radius of 1.4 A with [NaCl] = 0.1 M calculated with
both the nonlinear Poisson-Boltzmann equation (A, ,0), and the size-modified

Poisson-Boltzmann equation (x,0,+) are plotted as a function of [MgCl,]. The

NLPBE calculations were performed with a Stern layer of 1.4 A.



Volume integration

The volume integral in eq 27 can be evaluated in the limit ¢,, — 0 by first computing
the volume integral, I, which is given by noting that because &£(r)>0 for all r, we
can write another integral, /, that is an upper bound on I:

This integration can be divided into two regions
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where I' is the boundary of the molecule and R, is chosen far enough from the
molecule so that for R, <r<oo, & can be approximated by the linear Poisson-
Boltzmann equation. As c¢,, = 0, both terms in eq Al go to zero, and I therefore

goes to zero.

Taylor series of volume-exclusion factor
The volume exclusion factor £(r) is defined from:
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, where &(r) = Z§k and &(r)=a’g(r,a), and

g(r,a)=Y {c;exp(~z; ) +c, exp(z; @) — (c;; +¢,)} - (A.3)

The NLPB equation is subtracted from SMPB equation in the solvent region

4_72'{ P (P)

Vi@—gu)=- kTe ' 1+ (@)

=P (D)} (A4)

The Taylor expansion of equation on variables p,, (¢) and &(¢) around ¢,, results in
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The term (¢—¢,,) asymptotically goes to zero as a — 0. If the higher order term
O(a’(p—¢,, )’ is ignored, the ansatz (¢—d¢,,)=0(a’)F(4,,) serves as the solution

to the equation (A.5). This form of solution gives the derivative of electrostatic

potential w.r.t. a as:
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da
with limd—¢ =0.

a—0 da

Note that for ¢,, =0, the ¢ =0 and therefore F(¢,, =0)=0.

The Taylor series of volume-exclusion factor &£(r) around ¢ =¢,, is

§(¢) = §(¢NL) ~-a’ (¢ - ¢NL )p(¢NL) + 0(613 (¢ - ¢NL)2) (A7)
= a3g(r, a=0)- 0(06 )Py ) F () + 0(a9F2 (Pw))
Therefore it is valid that in the first order one could approximate the volume-

exclusion factor as £(r) =a’ f(r), where f(r)= g(r,a=0) is a function independent

of a.



