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1 Rules of the game

Figure S1 illustrates two examples of a failed and a successful game, respectively.

2 Scaling with the size M of the conceptual space

In Figure S2 we report the analysis of the dependence of the observables considered in the main text on the number
M of objects that compose the conceptual space of the agents. We found that the properties related to the emerged
lexicon only mildly depend on M . This is important since it allows a quantitative comparison of the model results
with the actual human reality, for which in general only a rough estimate of the size of the conceptual space is possible.

3 Scaling with the population size

In Figure S3 we report the analysis of the dependence of the observables considered in the main text on the population
size N . Again, we found that the properties related to the emerged lexicon only mildly depend on N .

4 Compositionality with other similarity measures

We consider here two possible variants of the MM similarity adopted in the main text: the same pairs similarity (SP)
and the all pairs similarity (AP) . The SP similarity is defined as follows: given two words w1 and w2, we aligned them
either making the left-end or the right-end coincide. We then add 1 only when the two words share the same form in
the same position. Forms shared by the two words in different positions do not contribute to the SP similarity score.
The SP measure will be the maximum between the left-end and the right-end alignments. The AP similarity does not
require alignment: given two words w1 and w2, a score of 1 is given for each form shared by two words, irrespective
of their relative position in those words.

Figure S4 reports the results for the excess similarity (as defined in the main text) when using the SP (left) and
the AP (right) similarity scores.

5 Uncorrelated scale-free networks

We have considered networks with different topologies in order to test the robustness of our simulations with respect
to the structure of the underlying network. Each node i of a network is first characterized by its degree ki (number of
links) and a first characterization of the network properties is obtained by the statistical distributions of the nodes’
degree, P (k). In order to quantify the topological correlations in a network, two main quantities are customarily
measured. The clustering coefficient ci of a node i measures the local cohesiveness around this node [1]. It is defined
as the ratio of the number of links between the ki neighbors of i and the maximum number of such links, ki(ki− 1)/2.
The clustering spectrum measures the average clustering coefficient of nodes of degree k, according to

C(k) =
1

Nk

∑
i

δk,kici . (1)
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Moreover, correlations between the degrees of neighboring nodes are conveniently measured by the average nearest
neighbors degree of a vertex i, knn,i = 1

ki

∑
j∈V(i) kj , and the average degree of the nearest neighbors, knn(k), for

vertices of degree k [2]

knn(k) =
1

Nk

∑
i

δk,ki
knn,i. (2)

In the absence of correlations between degrees of neighboring vertices, knn(k) is a constant. An increasing behavior of
knn(k) corresponds to the fact that vertices with high degree have a larger probability of being connected with large
degree vertices (assortative mixing). On the contrary, a decreasing behavior of knn(k) defines a disassortative mixing,
in the sense that high degree vertices have a majority of neighbors with low degree, while the opposite holds for low
degree vertices [3].

In the main text we considered the homogeneous Erdős -Rényi random graph [4,5], in which nodes are linked with
a uniform probability plink. In this case, a small diameter and a small clustering coefficient are obtained, and the
degree distribution is homogeneous and binomial. The specific properties of the graph depend on plink. In particular
if M is the number of nodes, for plink > log(M)/M the graph will almost surely be connected.

We consider here the random scale-free network obtained from the uncorrelated configuration model [6]. It has a
broad degree distribution P (k) ∼ k−γ and it is constructed in such a way to avoid two- and three-vertex correlations,
as measured by the average degree of the nearest neighbors knn(k) and the clustering coefficient of the vertices of
degree k, respectively. The average degree distribution is finite for the values of the exponent 2 < γ, and the second
moment of the distribution in finite for 3 < γ. We consider here two values for the degree distribution exponent, one
below and one above the latter threshold: γ = 2.5 and γ = 3.5. We find that all the considered observables do not
depend on the value of γ and, moreover, show the same qualitative (and in most cases quantitative) behaviour as
when considering an homogeneous Erdős -Rényi random graph with the same number M of nodes (see Figure S5).
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Speaker

Hearer

Before After

Topic O2 O3 O4

f3f3f12 f4f19f13 f4f19 f73
f17f26f20 f16f47 f15 f20f3

f23f18f0f0 f27f1f8
f0f22f0
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f1f2f3 f3f3f5 f8f6f1 f9f4f5
f2f7 f1f4f12 f12f3f7 f7f5f7
f1f1 f5f9 f3f9

f3f8f15
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Speaker

Hearer
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Figure S1. Examples of Games. Top. Example of a failed game. In this game the Speaker S selects the Topic
and decides to utter the word f1f1. This word is unknown to the Hearer H since f1f1 is not present in any of H’s
inventories. In this case the game is a failure and H adds the word f1f1 to her inventory for the Topic. Bottom.
Example of a successful game. In this game the Speaker S selects the Topic and decides to ls utter the word f1f1.
This word is known to the Hearer H since f1f1 is present in H’s inventory for the Topic. In this case the game is a
success and both S and H remove from the Topic’s inventory all the competing words but f1f1.
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Figure S2. Dependence on M. Top Left. Word length distribution. In the main figure the distribution of word
length L for different values of M , with pM = 1 and τM = 1 is reported. In the inset we report how one obtains the
same distributions by rescaling the length by log(M)0.5. This means that there is a very weak dependence of the
average word-length on the size of the conceptual space. Top Right. Frequency-rank distribution for elementary
forms. In the main figure we show the frequency-rank distribution for elementary forms for different values of M ,
again with pM = 1 and τM = 1. In the inset we show the number of distinct forms in the emerged lexicons as a
function of τM and for pM = 1. The curves are rescaled in order to overlap for high value of τM . When τM is not
high enough, the noise ceases to be relevant and both the absolute number of distinct forms increases and the
dependence on M becomes stronger. Center Left. Combinatoriality. Combinatoriality C for different values of M
as a function of τM and for pM = 0.5. Although the curves are very noisy, the value of the combinatoriality
(measured as explained in the main text) is very weakly dependent on M . Center Right. Excess similarity of words
as a function of the distance of the corresponding objects on the graph. The difference between the actual similarity
and its random value computed on a reshuffled communication system is shown (see text for details) for different
values of M and for τM = 1 and pM = 0.2. Again, the results depend very weakly on M and the excess similarity
becomes more pronounced as M increases. Bottom Left. Success rate as a function of time. The success rate is
reported as a function of time (number of games) for different values of M , with pM = 1 and τM = 1. The curves for
different values of M collapse if time is rescaled with a factor M log M . Bottom Right. Convergence time. Time
needed for the system to reach convergence for different values of M , as a function of of pM and with τM = 1. We
rescaled the curves in order to superimpose the curves for the value of pM where the convergence time is minimal.
We note that the scaling with M of the convergence time is different from the scaling with M of the success rate.
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Figure S3. Dependence on N . Top Left. Word length distribution. In the main figure the distribution of word
length L for different values of N , with pM = 1 and τM = 1 is reported. In the inset we report the same distribution
with the word length rescaled by a factor log(N)0.5. The collapse in this case is very good, demonstrating an
extremely weak dependence of the average word length on the population size N . Top Right. Frequency-rank
distribution for elementary forms. In the main figure we show the frequency-rank distributions for elementary forms
for different values of N , again with pM = 1 and τM = 1. We also report two fits obtained with a Yule (red solid
line) f(R) = aRbcR, which has been hypothesized to reproduce the actual distribution in human languages [7], and a
Yule-like (black solid line) distribution, f(R) = α exp−βRγRδ [8]. The two functions coincide for γ = 1. The Yule
function seems to fit better and better our distributions as M increases, while a finite-size distribution is better fitted
by a Yule-like distribution. In the inset we show the number of distinct forms in the emerged lexicons as a function
of τM , rescaled with the number N of agents, and for pM = 1. The curves are again rescaled in order to overlap for
high values of τM . Center Left. Combinatoriality. Combinatoriality C for different values of N as a function of τM ,
rescaled with the number N of agents, and for pM = 0.5. Center Right. Excess similarity of words as a function of
the distance of the corresponding objects on the graph. The difference between the actual similarity and its random
value computed on a reshuffled communication system is shown (see the main text for details) for different values of
N and for τM = 1 and pM = 0.2. Again, the results show a very weak dependence on N and the excess similarity
becomes slightly more pronounced as N increases. Bottom Left. Success rate as a function of time. Success rate is
reported as a function of time (number of games) for different values of N , with pM = 1 and τM = 1. The curves for
different values of N collapse if time is rescaled with a factor N1.5, as in the original Naming Game [9]. Bottom
Right. Convergence time. Time needed for the system to reach convergence for different values of N , as a function
of pM and with τM = 1. We rescaled the curves in order to superimpose the curves for the value of pM where the
convergence time is minimal.
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Figure S4. Left. Excess SP similarity The difference between the actual SP similarity and its random value
computed on a reshuffled communication system is shown. The results are reported for N = 10 and M = 100.
Results are shown for different values of the connecvity of the objects graph, keeping fixed τM = 1 (main figure) and
for different values of τM keeping fixed pM = 0.2 (inset). Right. Excess AP similarity The difference between the
actual AP similarity and its random value computed on a reshuffled communication system is shown. The results are
reported for N = 10 and M = 100. Results are shown for different values of the connectivity of the objects graph,
keeping fixed τM = 1 (main figure) and for different values of τM keeping fixed pM = 0.2 (inset).
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Figure S5. Dependence of the graph structure In this figure we report the results obtained by considering a
different structure of the conceptual space. We considered in particular random scale-free networks obtained from the
uncorrelated configuration model [6], characterized by a degree distribution P (k) ∼ k−γ . In our case we used γ = 2.5
and γ = 3.5. Top Left. Word length distribution. In the main figure the distribution of word length for different τ
and for the two values of the degree distribution exponent γ is reported. The inset reports the average word length as
a function of τ/M and for the two values of γ. As observed in the text, the word length distribution (and thus the
average word length) does not depend on γ and is perfectly comparable to that obtained when considering Erdős
-Rényi random graph (compare with fig. 2 in the main text). Top Right. Frequency-rank distribution for elementary
forms. In the main figure the frequency-rank distribution for elementary forms is shown again for different values of
the parameter τ and γ = 2.5. In the top inset we show the same distribution fixing τ/M = 1 and for the two values
of γ. In the bottom inset the number of distinct elementary forms composing the lexicon is reported, as a function of
τ and for the two values of γ. Again the results do not depend on γ and are perfectly comparable to those obtained
when considering Erdős -Rényi random graph. Bottom Left. Combinatoriality. Combinatoriality C (see the text
for definition) for the two values of γ as a function of τ . In the inset the normalized entropy, as defined in the text, is
reported, again for the two values of γ as a function of τ . Bottom Right. Excess similarity of words as a function
of the distance of the corresponding objects on the graph. The excess MM similarity (see text) for different values of τ
and for the two values of γ. As far as a non trivial structure of the world is preserved, the results do not depend on
the actual value of the γ exponent. We here considered a graph with M = 100 nodes in order to have a greater
variability. Note that the increase in excess similarity at high distances is an artifact, as the high error bars indicate,
of the small number of objects at those distances in the graph. All the above results are averaged over 100
realizations of the process on the same graph with population size N = 10 and number of objects M = 40.


