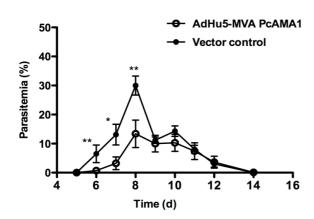
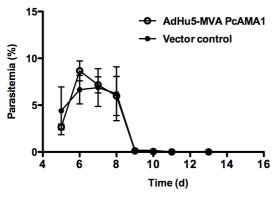

| Valjonity                                                                                                                                               | 10                                                                                                         | 20                                                                                                                    | 30                                                                                                     | 40                                                                                                                                          | 50                                                                                                                       | 60                                                                                                       | 70                                                                                          | 80                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| chabaudi chabaudi AS<br>chabaudi adami DS                                                                                                               | MKELYYLVI LCS<br>MKELYYLVI LCS                                                                             |                                                                                                                       |                                                                                                        |                                                                                                                                             |                                                                                                                          |                                                                                                          |                                                                                             |                                                                                        |
| bjonty                                                                                                                                                  | RVENQDYRI PSG                                                                                              | KCPVMGKGLTI                                                                                                           | QXSXXSFLXXV                                                                                            | /ATGX QKVREG                                                                                                                                | GLAF PXXDVN                                                                                                              | I SPXXI XNLX                                                                                             | XMYKX HX EL)                                                                                | (AL NDMS                                                                               |
|                                                                                                                                                         | 90                                                                                                         | 100                                                                                                                   | 110                                                                                                    | 120                                                                                                                                         | 130                                                                                                                      | 140                                                                                                      | 150                                                                                         | 160                                                                                    |
| chabaudichabaudiAS<br>chabaudiadamiDS                                                                                                                   | RVENQDYRI PSG<br>RVENQDYRI PSG                                                                             |                                                                                                                       |                                                                                                        |                                                                                                                                             |                                                                                                                          |                                                                                                          |                                                                                             |                                                                                        |
| ajonity                                                                                                                                                 | LCAKHASFXVPG                                                                                               | X NX NX AYRHP                                                                                                         | AVYDKX NXTCYI                                                                                          | L YVAAQENMG                                                                                                                                 | PRYCSNEEXN                                                                                                               | ENQPECFTPE                                                                                               | KKDEYKNLS                                                                                   | YLTKNLR                                                                                |
|                                                                                                                                                         | 170                                                                                                        | 180                                                                                                                   | 190                                                                                                    | 200                                                                                                                                         | 210                                                                                                                      | 220                                                                                                      | 230                                                                                         | 240                                                                                    |
| chabaudi chabaudi AS<br>chabaudi adami DS                                                                                                               | LCAKHASF¶VPG<br>LCAKHASFFVPG                                                                               |                                                                                                                       |                                                                                                        |                                                                                                                                             |                                                                                                                          |                                                                                                          |                                                                                             |                                                                                        |
|                                                                                                                                                         |                                                                                                            |                                                                                                                       |                                                                                                        |                                                                                                                                             |                                                                                                                          |                                                                                                          |                                                                                             |                                                                                        |
| ajonty                                                                                                                                                  | EDWETSCPNKSI                                                                                               | QNAKF GVW/DI                                                                                                          | GYCSEYQKKEVX                                                                                           | DSXSLSXCXX                                                                                                                                  | IVFDESASDQ                                                                                                               | bkolekhred.                                                                                              | TXKX RRGI VI                                                                                | DRNGKLI                                                                                |
| ajonity                                                                                                                                                 | EDWET SCPNKSI<br>250                                                                                       | QNAKF GVWVDI<br>260                                                                                                   | GYCSEYQKKEVX<br>270                                                                                    | OSX SL SXCXX<br>280                                                                                                                         | 1 VF DES AS DQ<br>290                                                                                                    | 300<br>300                                                                                               | TXKX RRGI VI<br>310                                                                         | -                                                                                      |
| chabaudichabaudiAS                                                                                                                                      |                                                                                                            | 260<br>QNAKF GVWVDI                                                                                                   | 270<br>GYCSEYQKKEV                                                                                     | 280<br>DSNSLSDCSK                                                                                                                           | 290<br>I VFDESASDQ                                                                                                       | 300<br>PKQYEKHLED                                                                                        | 310<br>TAK RRGI VI                                                                          | 320<br>DRNGKLI                                                                         |
| chabaudichabaudiAS<br>chabaudiadamiDS                                                                                                                   | 250<br>EDWET SCPNKSI                                                                                       | 260<br>QNAKF GVVVVDI<br>QNAKF GVVVVDI                                                                                 | 270<br>GYCSEYQKKEVI<br>GYCSEYQKKEVI                                                                    | 280<br>DSNSLSDCSK<br>IDSKSLSECNR                                                                                                            | 290<br>I VF DES AS DQ<br>I VF DES AS DQ                                                                                  | 300<br>PKQYEKHLED<br>PKQYEKHLED                                                                          | 310<br>TAKERRGI VI<br>TTKFRRGI VI                                                           | 320<br>DRNGKLI<br>DRNGKLI                                                              |
| shabaudi chabaudi AS<br>chabaudi adami DS<br>ijonty                                                                                                     | 250<br>EDWETSCPNKSI<br>EDWETSCPNKSI                                                                        | 260<br>QNAKF GVVVVDI<br>QNAKF GVVVVDI                                                                                 | 270<br>GYCSEYQKKEVI<br>GYCSEYQKKEVI                                                                    | 280<br>DSNSLSDCSK<br>IDSKSLSECNR                                                                                                            | 290<br>I VF DES AS DQ<br>I VF DES AS DQ                                                                                  | 300<br>PKQYEKHLED<br>PKQYEKHLED                                                                          | 310<br>TAKERRGI VI<br>TTKFRRGI VI                                                           | 320<br>DRNGKLI<br>DRNGKLI                                                              |
| chabaudi chabaudi AS<br>chabaudi adami DS<br>ajonity<br>chabaudi chabaudi AS                                                                            | 250<br>EDWETSCPNKSI<br>EDWETSCPNKSI<br>GEALLPI GSYRA                                                       | 260<br>QNAKF GVWWD(<br>QNAKF GVWWD(<br>DQVKS KGKGY)<br>340<br>DQVKS KGKGY)                                            | 270 GYCSEYOKKEVI GYCSEYOKKEVI NWANYDKKEKKO 350 NWANYDKKEKKO                                            | 280 DS NS LS DC S N DS NS LS DC S N DS KS LS ECNR CYLFNKKPT CL 360 CYLFNKKPT CL                                                             | 290 I VF DES AS DO I VF DES AS DO I NDKNF VATT. 370 I NDKNF VATT.                                                        | 300 PKQYEKHLED' PKQYEKHLED' ALSSLEEAXQ 380 ALSSLEEASQQ                                                   | 310 TAK RRGI VI TTKFRRGI VI ESFPCDI YKI 390 ESFPCDI YKI                                     | 320<br>DRNGKLI<br>DRNGKLI<br>KKI AEEI<br>400<br>KKI AEEI                               |
| chabaudi chabaudi AS<br>chabaudi adami DS<br>ajonity<br>chabaudi chabaudi AS<br>chabaudi adami DS                                                       | 250 EDWET SCPNKSI EDWET SCPNKSI GEALLPI GSYRA 330 GEALLPI GSYRA                                            | 260<br>QNAKF GVW/DO<br>QNAKF GVW/DO<br>DQVKS KGKGYI<br>340<br>DQVKS KGKGYI<br>DQVKS KGKGYI                            | 270 GYCSEYOKKEVI GYCSEYOKKEVI NWANYDKKEKKO 350 NWANYDKKEKKO                                            | 280 DS NS LS DC S N DS NS LS DC S N DS KS LS ECNR CYLFNKKPT CL 360 CYLFNKKPT CL CYLFNKKPT CL                                                | 290 I VEDESASDO I VEDESASDO I NDKNEVATT. 370 I NDKNEVATT. I NDKNEVATT.                                                   | 300<br>PKQYEKHLED<br>PKQYEKHLED<br>ALSSLEEAXQ<br>380<br>ALSSLEEASQ<br>ALSSLEEAPQ                         | 310<br>T MK RRGI VI<br>TTKFRRGI VI<br>ESFPCDI YKI<br>ESFPCDI YKI<br>ESFPCDI YKI             | 320<br>DRNGKLI<br>DRNGKLI<br>KKI AEEI<br>400<br>KKI AEEI<br>KKI AEEI                   |
| chabaudichabaudiAS<br>chabaudiadamiDS<br>jonity<br>chabaudichabaudiAS<br>chabaudiadamiDS<br>jonity                                                      | 250 EDWETSCPNKSI EDWETSCPNKSI GEALLPI GSYRA 330 GEALLPI GSYRA GEALLPI GSYRA                                | 260<br>QNAKF GVW/DO<br>QNAKF GVW/DO<br>DQVKS KGKGYI<br>340<br>DQVKS KGKGYI<br>DQVKS KGKGYI                            | 270 GYCSEYOKKEVI GYCSEYOKKEVI NWANYDKKEKKO 350 NWANYDKKEKKO                                            | 280 DS NS LS DC S N DS NS LS DC S N DS KS LS ECNR CYLFNKKPT CL 360 CYLFNKKPT CL CYLFNKKPT CL                                                | 290 I VEDESASDO I VEDESASDO I NDKNEVATT. 370 I NDKNEVATT. I NDKNEVATT.                                                   | 300<br>PKQYEKHLED<br>PKQYEKHLED<br>ALSSLEEAXQ<br>380<br>ALSSLEEASQ<br>ALSSLEEAPQ                         | 310<br>T MK RRGI VI<br>TTKFRRGI VI<br>ESFPCDI YKI<br>ESFPCDI YKI<br>ESFPCDI YKI             | 320<br>DRNGKLI<br>DRNGKLI<br>KKI AEEI<br>400<br>KKI AEEI<br>KKI AEEI                   |
| chabaudi chabaudi AS<br>chabaudi adami DS<br>ajonity<br>chabaudi chabaudi AS<br>chabaudi adami DS<br>ajonity                                            | 250 EDWET SCPNKSI EDWET SCPNKSI GEALL PI GSYRA 330 GEALL PI GSYRA GEALL PI GSYRA KVMNVNRNNNGN              | 260 QNAKF GVWWD QNAKF GVWWD QNAKF GVWWD  DQVKS K GK GY I  DQVKS K GK GY I  XT I XF PRI FI S  420                      | 270 GYCSEYOKKEVI GYCSEYOKKEVI NWANYDKKEKKO NWANYDKKEKKO NWANYDKKEKKO SDDKESLKCPCE 430 SDDKESLKCPCE     | 280  DS NS LS DC S N  DS NS LS DC S N  DS NS LS DC S N  360  CYLF NKKPT CL  CYLF NKKPT CL  EPTQLT QSS CN  440  EPTQLT QSS CN                | 290 I VF DES AS DO I VF DES AS DO I NDKNF VATT. 370 I NDKNF VATT. I NDKNF VATT. FFVCNCVEKR 450 FFVCNCVEKR                | 300 PKQYEKHLED' PKQYEKHLED' ALSSLEEAX Q 380 ALSSLEEA Q ALSSLEEAPQ QFI SENNEVE 460 QFI SENNEVE            | 310 TAK RRGIVI TTKFRRGIVI ESFPCDIYKI 390 ESFPCDIYKI ESFPCDIYKI IKXEFKSEYI 470 IK■EFKSEYI    | 320 DRNGKLI DRNGKLI  KKI AEEI  KKI AEEI  KKI AEEI  KKI AEEI  KKI AEEI  480 ESPI NOR    |
| ajority  chabaudi chabaudi AS chabaudi adami DS ajority  chabaudi chabaudi AS chabaudi adami DS ajority  chabaudi chabaudi AS chabaudi adami DS ajority | 250 EDWET SCPNKSI EDWET SCPNKSI GEALL PI GSYRA GEALL PI GSYRA GEALL PI GSYRA KVMNVNRNNNGN 410 KVMNVNRNNNGN | 260 QNAKF GVWVD( QNAKF GVWVD( QNAKF GVWVD(  DQVKS K G K G Y I) DQVKS K G K G Y I) XT I XFPRI FI S 420 DT I KFPRI FI S | 270 GYCSEYOKKEVI GYCSEYOKKEVI NWANYDKKEKKO 350 NWANYDKKEKKO NWANYDKKEKKO SDDKESLKCPCE 430 SDDKESLKCPCE | 280  DS NS L S DC S N  DS NS L S DC S N  DS NS L S DC S N  360  CYI F NKKPT CL  CYI F NKKPT CL  EPTOLT QSS CN  EPTOLT QSS CN  EPTOLT QSS CN | 290 I VF DES AS DO I VF DES AS DO I VF DES AS DO I NDKNF VATT. 370 I NDKNF VATT. I NDKNF VATT. FFVCNCVEKR 450 FFVCNCVEKR | 300 PKQYEKHLED' PKQYEKHLED' ALSSLEEASQ 380 ALSSLEEASQ ALSSLEEAPQ QFI SENNEVE 460 QFI SENNEVE QFI SENNEVE | 310 TEKERRGI VI TTKFRRGI VI ESFPCDI YKI 390 ESFPCDI YKI ESFPCDI YKI I KXEFKSEYI I KDEFKSEYI | 320 DRNGKLI DRNGKLI  (KI AEEI  (KI AEEI  (KI AEEI  (KI AEEI  ESPINQR  ESPINQR  ESPINQR |

## **Supplemental Figure 1: Sequence comparison of PccAS AMA1**

The sequence of PccAS AMA1 was aligned (by Clustal W method) to that of related parasite *P. chabaudi* adami DS. The sequence differs by 34 αα (shown in grey).




## Supplemental Figure 2: *In vivo* CD4<sup>+</sup> T cell depletion using anti-CD4 GK1.5 mAb.


Two groups of BALB/c mice (n=6) were immunised with 5 x 10<sup>10</sup> vp AdHu5-PcAMA1 and boosted 8 weeks later with 1 x 10<sup>7</sup> pfu MVA-PcAMA1. CD4<sup>+</sup> T cells were depleted in one group of naïve and one group of vaccinated mice with anti-CD4 GK1.5 mAb. The mice received 200 $\mu$ g of depleting anti-CD4 mAb intraperitoneally (i.p.) on days -2, -1 and day of challenge (day 0). Seven days after challenge the PMBCs were isolated from a blood sample and surface stained for CD3 (clone 145-2C11), CD4 (clone LT34) and CD8 $\alpha$  (clone 53-6.7). Cells were analyzed by flow cytometry for % CD3<sup>+</sup> CD4<sup>+</sup> T cells (left panel) in the depleted and non-depleted samples, and the CD4<sup>+</sup> and CD8<sup>+</sup> T cells were plotted against each other (right panel). The figure shows representative flow plots for vaccinated non-depleted (A), naïve non-depleted (B), vaccinated depleted (C) and naïve depleted (D). There was still > 98% depletion at day 7 post challenge.

AdHu5-MVA PcAMA1

Α







% 10 Vector control 5 10 4 6 8 10 12 14 16 Time (d)

P. chabaudi adami DK

P. chabaudi adami DS

Supplemental Figure 3: (A) Comparison of efficacy after immunization of BALB/c mice with control viral vaccines and those recombinant for PcAMA1 (B) Efficacy of the AdHu5-MVA PcAMA1 vaccination regime against challenge with heterologous parasite strains.

Mice were primed with 1 x  $10^{10}$  vp AdHu5-PcAMA1 or non-recombinant AdHu5 control and boosted 8 weeks later with 1 x  $10^{7}$  pfu MVA-PcAMA1 or MVA expressing GFP. Two weeks after the boost mice were challenged i.v. with (A)  $10^{5}$  PccAS pRBC or (B) *P. chabaudi adami* DK or *P. chabaudi adami* DS). Parasitemia was monitored from day 5 by Giemsa-stained thin blood smears and results are expressed as the % infected RBCs (mean  $\pm$  SEM). The difference in parasitemia between the groups was taken as the measure of vaccine efficacy. As seen with naïve mice, there was a significant difference in parasitemia between the control and PcAMA1 immunized mice by Mann-Whitney test (\*  $P \le 0.05$  and \*\*  $P \le 0.01$ ) (A). There was no significant difference in parasitemia between the vector control and PcAMA1 immunized mice when challenged with heterologous *P. chabaudi* parasites (B).

| POOL         | PEPTIDE # | αα SEQUENCE     | αα POSITION |
|--------------|-----------|-----------------|-------------|
| Pool 7       | Pcc 1     | CSEGTDNIISENGDV | 21-35       |
|              | Pcc 2     | DNIISENGDVKFDLI | 26-40       |
|              | Pcc 3     | ENGDVKFDLIPKENT | 31-45       |
|              | Pcc 4     | KFDLIPKENTERSHK | 36-50       |
|              | Pcc 5     | PKENTERSHKLINPW | 41-55       |
|              | Pcc 6     | ERSHKLINPWEKFME | 46-60       |
|              | Pcc 17    | ITIQNSKVSFLTRVA | 101-115     |
|              | Pcc 18    | SKVSFLTRVATGNQK | 106-120     |
|              | Pcc 19    | LTRVATGNQKVREGG | 111-125     |
| Pool 8       | Pcc 20    | TGNQKVREGGLAFPQ | 116-130     |
|              | Pcc 21    | VREGGLAFPQTDVNI | 121-135     |
|              | Pcc 22    | LAFPQTDVNIAPITI | 126-141     |
|              | Pcc 23    | TDVNIAPITIANLKL | 131-145     |
|              | Pcc 24    | APITIANLKLMYKDH | 136-150     |
|              | Pcc 27    | KEILALNDMSLCAKH | 151-165     |
|              | Pcc 28    | LNDMSLCAKHASFYV | 156-170     |
|              | Pcc 31    | PGTNVNTAYRHPAVY | 171-185     |
|              | Pcc 32    | NTAYRHPAVYDKSNQ | 176-190     |
|              | Pcc 33    | HPAVYDKSNQACYIL | 181-195     |
|              | Pcc 34    | DKSNQACYILYVAAQ | 186-200     |
| Pool 9       | Pcc 35    | ACYILYVAAQENMGP | 191-205     |
|              | Pcc 36    | YVAAQENMGPRYCSN | 196-210     |
|              | Pcc 37    | ENMGPRYCSNEEDNE | 201-215     |
|              | Pcc 38    | RYCSNEEDNENQPFC | 206-220     |
|              | Pcc 39    | EEDNENQPFCFTPEK | 211-225     |
|              | Pcc 40    | NQPFCFTPEKKDEYK | 216-230     |
|              | Pcc 41    | FTPEKKDEYKNLAYL | 221-235     |
|              | Pcc 42    | KDEYKNLAYLTKNLR | 226-240     |
|              | Pcc 43    | NLAYLTKNLREDWET | 231-245     |
|              | Pcc 44    | TKNLREDWETSCPNK | 236-250     |
| Pool 10      | Pcc 45    | EDWETSCPNKAIQNA | 241-255     |
|              | Pcc 46    | SCPNKAIQNAKFGVW | 246-260     |
|              | Pcc 47    | AIQNAKFGVWVDGYC | 251-265     |
|              | Pcc 48    | KFGVWVDGYCSEYQK | 256-270     |
| _            | Pcc 49    | VDGYCSEYQKKEVRD | 261-275     |
| _            | Pcc 50    | SEYQKKEVRDSNSLS | 266-280     |
|              | Pcc 51    | KEVRDSNSLSDCSKI | 271-285     |
|              | Pcc 52    | SNSLSDCSKIVFDES | 276-290     |
|              | Pcc 53    | DCSKIVFDESASDQP | 281-295     |
|              | Pcc 54    | VFDESASDQPKQYEK | 286-300     |
| Pool 11      | Pcc 55    | ASDQPKQYEKHLEDT | 301-315     |
|              | Pcc 56    | KQYEKHLEDTAKIRR | 306-320     |
| -            | Pcc 57    | HLEDTAKIRRGIVDR | 311-325     |
|              | Pcc 58    | AKIRRGIVDRNGKLI | 316-330     |
|              | Pcc 59    | GIVDRNGKLIGEALL | 321-335     |
| <u> </u>     | Pcc 60    | NGKLIGEALLPIGSY | 326-340     |
|              | Pcc 61    | GEALLPIGSYRADQV | 331-345     |
| <u> </u>     | Pcc 62    | PIGSYRADQVKSKGK | 336-350     |
| <b> </b>     | Pcc 63    | RADQVKSKGKGYNWA | 341-355     |
| <del> </del> | Pcc 64    | KSKGKGYNWANYDKK | 346-360     |
| Pool 12      | Pcc 65    | GYNWANYDKKEKKCY | 351-365     |
|              |           |                 |             |

|         | Pcc 67 | EKKCYIFNKKPTCLI | 361-375 |
|---------|--------|-----------------|---------|
|         | Pcc 68 | IFNKKPTCLINDKNF | 366-380 |
|         | Pcc 69 | PTCLINDKNFVATTA | 371-385 |
|         | Pcc 70 | NDKNFVATTALSSLE | 376-390 |
|         | Pcc 71 | VATTALSSLEEASQE | 381-395 |
| _       | Pcc 72 | LSSLEEASQESFPCD | 386-400 |
|         | Pcc 73 | EASQESFPCDIYKKK | 401-415 |
|         | Pcc 76 | IAEEIKVMNVNRNNN | 406-420 |
| Pool 13 | Pcc 77 | KVMNVNRNNNGNGTI | 401-415 |
|         | Pcc 78 | NRNNNGNGTIQFPRI | 406-420 |
|         | Pcc 81 | FISDDKESLKCPCEP | 421-435 |
|         | Pcc 82 | KESLKCPCEPTQLTQ | 426-440 |
|         | Pcc 83 | CPCEPTQLTQSSCNF | 431-445 |
|         | Pcc 84 | TQLTQSSCNFFVCNC | 436-450 |
|         | Pcc 87 | VEKRQFISENNEVEI | 451-465 |
|         | Pcc 88 | FISENNEVEIKEEFK | 456-470 |
|         | Pcc 89 | NEVEIKEEFKSEYES | 461-470 |
|         | Pcc 90 | KEEFKSEYESPINQ  | 466-480 |

## Supplemental Table 1: PccAS peptide pools P7 to P13 covering the entire ectodomain of PccAS AMA1.

The table shows the seven peptide pools tested by ICS (Figure 3) and the  $\alpha\alpha$  sequence of each peptide. Each pool contains 10 peptides (each 15mers) and covers the remainder of the entire ectodomain of PccAS AMA1 (not covered by peptides shown in Table 1).