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Supplemental Information

Supplemental Methods

Model:
As discussed in the main text, we used a coarse-grained modeling framework that treated

a and g tubulin monomers as rigid bodies (rods) connected by elastic springs.

Moreover, we assumed that the monomers were chained together along the longitudinal
direction in each protofilament (PF). This assumption is consistent with the model of
VanBuren et al.(1) However, in our case a monomer is more than just the vector used in
the work of VanBuren et al. The rod (monomer) can rotate along its long axis to account
for heterogeneous lateral interactions between tubulins. To describe the behavior of the
microtubules (MTs), we first needed to define the spatial position and orientation of each
monomer. In general a rigid body has 6 degrees of freedom to specify its position and
orientation. However, the connected rod model restrains the number of degrees of
freedom. For convenience of mathematical formulation of the model, we used two sets of
coordinate frames. Each tubulin monomer is treated as a three-dimensional rigid body,
and thus has an intrinsic coordinate frame. Therefore one can specify the spatial and
orientational coordinates of a monomer by comparing its intrinsic coordinate frame with
the laboratory fixed frame, or with the intrinsic frame of the previous monomer on the

same PF. Below we explains the procedure in detail.

For the j-th PF, one first needs 3 coordinates (Xo, j, Yo, j, Zo, j) in the laboratory frame to
specify the spatial coordinate of the minus end of the first a-tubulin relative to the

laboratory frame. Then the spatial coordinate of the plus end of the a-tubulin is given by



(X1,j, Y1, Z1,j)- One also needs another coordinate l//f ; to describe the rotation along the

rod long axis relative to the laboratory frame. Alternatively, one can use the relative
coordinates (L;,j, 01, ;, ¢1,j, w1, j), Where L;; is the modulus of the vector r;; =(x;; — xo,,
Yij — Yoj» Z1j — Zoj), and (0,1, @1, w1 ;) are a set of angles defined in Figure 1d of the main
text to determine the orientation of the monomer with respect to the previous monomer—
the laboratory frame in this case. The next tubulin monomer, a B-tubulin, has its minus
end at (X1,j, Y1,j, Z1,;), and can be similarly described by a set of relative coordinates (L ;,

02, j, 92, j, w2, ;). The remaining monomers can be described in a similar way. The

transformation between the coordinates in the laboratory frame, (xl.,j, y

L
0 Ziyr Vi), and

the relative coordinates (L;;, i), ¢ij, yi;) 1s given by
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and for the inverse transformation,
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where L2° =(x, ; —x_;)’ +(,, —¥..,)’ - The energy terms are functions of the relative

coordinates between monomers. Following VanBuren et al.(1), one can introduce an

auxiliary coordinate @ to describe deviation of the bending angle between the (i-1)-th and

i-th monomers within the j-th PF from the preferred value,



@, =arccos(l_ [ +m_ m +n_ n), (S3)

where the terms /, m, and » are the direction cosines given by

]=— m=—n=— (S4)

Having defined the position of the monomers through longitudinal interactions, one can
then derive the quantities describing the lateral interactions between 2 monomers (i, j-1)
and (i, j),: the distance between two monomers dj;, the shift angle between two monomers

®_, and the rotational angle y, (see Figure le in the main text). The term d is defined as

d. :Hr. -, ‘
i,j i,j i',j—-1 (SS)
_ [ 2 ¢ _ ¢ 2 c _ c 25\1/2
_((x,"j ‘xi"jfl) +(yi,j yl",jfl) +(Zi,j Zi',j*l) ) .
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where X, =— >~ and the others have the similar definitions. The shift and
rotational angles @, and y, are defined also from the global coordinates.
ij _ la la la la la la
@/ =arccos(I, I, +m™, m",  +n" 0" ), (56)

i —

V.= VliL,j - V/il,lj—l'
where the definitions of '/, m", and n'* are similar to those in Eq. (S4) except that L; is
replaced by dj. The details can be understood from Figure 1 in the main text and Figure

S1. These relative coordinates can be used to define the energy terms.

Energy terms and parameter estimations:

From the Young’s Modulus measurements of MT and the second moment of inertia, one

can derive the values of £,

ong

and k,, (1). The Yong’s Modulus can be determined based

on the rigidity £/ . Table S1 summarizes some of the experimental results (2-11). The



measured rigidity of MT has a very wide range, and thus so does the Young’s Modulus.
Binding of MT associated proteins may contribute to the diversity. In our studies we used
data from (12, 13) which were obtained under similar experimental conditions as those
we used in our simulations. Furthermore, we found that most of the spring constants had
little effect to the problems we are addressing (see Figure 3). Specifically, the Young’s

Modulus E can be derived from

EI
E=—
1
T
1 = Z (rojtter - ’/;:ner) (57)
l/;'nner = 84 nm
roulter = rinner + d[

Choosing an effective thickness of MT wall d; =1.54 nm (12)", one has

1= =) = 8012510 m’ (58)

1~2.5%10%Nm?
_EL | 3757x10%m*  _ | 0.266~0.665x10° N/m* Taxol MT
I 3~9x10%Nm®> | 0.799~2.396x10° N/m> Pure MT
3.757 x10 ¥ m*

(S9)

In this work the Young’s Modulus was chosen to be 0.665GPa (for Taxol MT) in order to
be consistent with most of the experiments reported, especially AFM experiments (12,

13).

The spring constant related to a given Young’s Modulus can then be derived from

* Notice that the effective thickness and monomer size discussed below are not equivalent to the
geometric size of a monomer. See (1) for more detailed discussions.



k=—. (S10)

where 4 is the cross section area perpendicular to the direction of force, and L, is the

original length along the direction of force. In our case, they are cross sections of
longitudinal/lateral interaction and length/width of monomer, respectively. The effective

size of monomer is 5.15 nm x 4 nm x 1.54 nm (12). Therefore, one can determine the

values of &, and k,,
0.665 GPa x (4nm x 1.54
k. = GPa x (dnm x 1.540m) _ 295417 GPa - nm (S11)
at 5.15nm
k,, =005 GPa "4(5'15"1'54) ~131853 GPa-nm (s12)

or, in the unit of kgT (at T = 300 K).

k,, =0.795417 GPa-nm

S13
dimer - nm
Kipng =1.31853 GPa-nm
(S14)
dimer - nm

The bending spring constant can be determined in the following way: the energy stored in

the bending dimer is 2.5~3 kgT(1, 14). One can then use

Ebend :%’(lnzrtdcl)2 (515)

to determine the bending constant. The maximum bending angle is ~22° (0.384 rad)(15).

One then has



k- 2.5 kyT/dimerx2 _ 14 k,T (516)

(0.384 rad)’ dimer - rad’

The shear modulus is estimated to be 48 MPa from (16) (MD) and 1.4+/-0.4MPa from

(17, 18) (AFM Exp). The shift energy has the form

3Lh ., 3Lh

E,.= o Gx tan’ @ (S17)
p 2p
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2 2
Therefore

kshiﬁ_tube =3LphG (518)

where G is the shear modulus (we use 10 MPa in our simulation), L is the length of a

monomer (4 nm), p is the effective width between lateral monomers (5.15 nm), 4 is the

effective thickness of the MT wall (1.54 nm). The value of kshzﬁitube of tube bond is

k

shift _Tube

=3x4nmx5.15nmx1.54nmx0.01GPa
k,T (S19)

dimer

=115.75

For G being 1MPa - 50Mpa, the corresponding K e 15 11 ~ 580 kgT/dimer.

No experimental data exists to estimate the value of kshl.ﬁ for the sheet bond, so we

examined the effect of changing the value within the range kg sheer = 10 ~ 100
kgT/dimer (see Figure3 In the main text). For simplicity, we assumed that the shear
properties for each monomer were symmetric with respect to the longitudinal and lateral

directions.

Experimental information of the torsion energy for longitudinal interactions and

rotational energy for lateral interactions is also absent. These energy terms are closely



related because rotation of a monomer changes the torsion of the PF directly. We also
examined values of these terms within a range (see Figure3 in the main text). Based on
the data fitting of both AFM experiments and structure information from (19), one set of

values of the spring constants for these two energy terms is

k,T

=10——=———— S20
or dimer - rad? (520)
rot _sheet = IOLZ
- dimer - rad (521)
rot_tube dimer - rad’

Bilinear gap analysis:

The “gap” in the force-indentation (F-I) curves of Schapp et al. (12) can be characterized
by two quantities: the kink position I' and the gap width dg,p,. The gap separates the
quasilinear response into two regions before the MT is ultimately “crashed”. Figure S2
schematically shows our method to calculate these two quantities. The kink position is
defined as the first positions where the stepping behavior happens. The gap width is
defined as the width when the second linear region starts to catch up the height of the first

linear region. Below we discuss how the F-I curve is generated in our simulations.

At each step the AFM cantilever position changes from (zapm — AZarm) tO Zapm.
Correspondingly, the MT wall changes its position from (zyt — Azmr) to Zmt. ZarMm and
zur are defined as the change in position of the cantilever and the MT wall, respectively.
More details can be found in Figure S7. Notice that the AFM cantilever is elastic (with
spring constant of 0.03N/m as in (12)), so in general Azapm # Azmr. Therefore, with the

assumption that the AFM cantilever always touches the MT, the AFM cantilever



deformation is given by zs = zapm— zmt. In their experiments, Schmitt et al measured

Zarm and zg experimentally, and then reported the measured force as a function of Azyr.

In our simulations, the quantity Azyr was externally controlled at every step. As

discussed below, some calibration is needed. The force balance relation gives F = kg zg =

8(U(ZMT))

, or in the discretize form,
OZ,r

Uz,,)-U(z,,—Az,.)
Az

MmT

F(z,, )=k '(ZSH +Az )= (522)

Where zg;; is the cantilever deformation at the previous step (index i indicates the current

step). However, the above force-balance assumption breaks down in the case where

Uz, )-U(z,, — Az
Az

MT

M= <0 (region 2 in Figure 11). With a finite rate of cantilever

displacement, the system is out of mechanical equilibrium. Notice that the cantilever

max

movement at each step is constrained to be —Az,; <Az < —z,, . Within this region,

N

the nonequilibrium force is given by

F(ZMT) = F(ZMT _AZMT) _ks Az (523)

Here we assumed that the change of MT wall deformation was rate limiting and the AFM
tip always touched the MT wall. This method becomes less accurate when large amount
of breakage events take place as the MT wall deformation becomes too large. In the
highly nonlinear region (region 4 in Figure2b of the main text), the interaction between
AFM tip and MT wall in the experiments becomes dramatic, and our simulations no

longer represent the same conditions as in experiments.



As mentioned in the main text, with the original data of F as a function of zapm, and the
information of the cantilever moving rate, one can, in principle, reconstruct the free
energy profile from the experimental data using a procedure developed for analyzing

single molecule force measurements based on the Jarzynski equality (20).

Supplemental Results:

The effects of moving AFM tip between and along MT PFs:

Besides changing the size of AFM tip radius and the MT length, another set of
simulations that could be directly tested experimentally is to change the position of the
AFM tip by moving it across, from one protofilament to the next (Figure S6a&b), or
along a protofilament (the MT longitudinal direction) (Figure S6e). MTs are polymers of
a- and B-tubulin dimers. Dimers polymerize end to end along PFs, which associate
laterally into hollow cylindrical filaments. Therefore, the wall of MTs is not a smooth
“wall”. There are in fact “bumps” along both the longitudinal (z) and lateral directions (x).
We find that the “bumps” along the PFs result in no observable difference on both linear
and quasi-linear responses, but the ones formed between PFs do have effects on both

kinds of mechanical responses.

Figure S6c plots the linear response of the MT wall to the AFM tip while the tip starts
from different x direction (Figure S6a) and then pushes the wall along the negative y
direction. Starting from position x = 0 nm, the spring constant x slightly decreases as the
x varies away from this point. But the decreasing trend stops temporarily at x~3.5 nm
and then decrease again at similar rate as that observed between x = 0 and 3.5 nm. The

decreasing trend stops again at about 4.5 nm. The slope increases about 0.005 N/m and



reaches maximum at 5.5 nm position. After that, the line drops quickly down to about
0.01 N/m. In these simulations, we used an AFM tip radius R = 15 nm. If we take a closer
look of the MT structure (Figure S6), we find that the contact point of the AFM tip on the
MT wall is at the center of PF number 1 (see Figure S6) for x = 0. When the tip moves
away, the tip center shifts away from PF 1. This decreases the effective spring constant a
little bit, as observed in Figure S6¢ for x=0~3.5 nm. At x~3.5 nm, the tip contacts PF 2
and moves away from PF 1. That explains why « increases at that point. The decreasing
of « afterwards is due to similar reasons, as the trend repeats. The last increase before x
= 5.5 nm is due to the tip contacting PF1, PF2 and even part of PF3 (note that the tip
radius R = 15 nm). That results in a big jump of linear response on tip pressure. For x>5.5
nm, since the tip moves away from the whole MT, « eventually decreases to zero as the

tip finally looses contact with the MT wall.

The value of I' (Figure S6d), on the other hand, increases from 3.5 to 5 nm when x
changes from 0 to 3.8 nm and then stays at 5 nm level for a further displacement of up to
4 nm. This step corresponds to the monomer size (~4 nm in diameter). The system has
this kind of response pattern because there are “bumps” between PFs on the MT wall,
about 4 nm apart. This changes the gap position as the force exerting pattern changes
when the tip moves from the center to the edge of the wall, crossing the “bumps”

periodically.

Figure S6e-g plots similar responses for the AFM tip at different starting positions along
the longitudinal direction (z). As expected, the linear response is stable before the
boundary effect shows up, and then drops to zero as the tip moves to the upper edge of

the MT and loses contact to the MT wall eventually (Figure S6f). The kink position plot

10



has a correlated response. When the spring constant decreases, the kink position increases
correspondingly. The soft end of MT wall spread the force to more monomers and
effectively delays the events of bond transitions, which is represented by a kink in the

force-indentation curve.

The L1 Model fails to predict the gap behavior consistently:

To investigate the possibility that L1 model is capable of generating the experimental
gap behavior in the AFM experiments, we performed large amount of simulations using
the L1 model. The results suggest that the .1 model fails to predict the gap behavior

consistently, under various conditions and different adjustable parameters.

As shown in the main text, the L1 model does not give a continuous gap behavior when
the AFM tip radius is changed. This result indicates that it should be possible to
discriminate between the L1 and L2 models experimentally. In this section, we further

examine the L1 model behavior to validate our conclusion.

The estimated lateral binding free energy is -3.2~-5.7 kgT (21). To more thoroughly
investigate the L1 model, we performed simulations using different lateral binding free
energies. The results show (Figure S4 & S9) that the L1 model cannot reproduce the gap
behavior robustly. The gap appears either at an indentation larger than observed, or never
happens. This observation further questions the ability of the L1 model to explain the
quasi-linear behavior in a self-consistent way, while the experimental observations are

highly repeatable (12).

11



L2 model reproduces the tip structure at disassemble stage
As shown in Figure S8, L2 model can easily reproduce the horn like tip structure when

the MT is at disassembly stage. The figure shows a typical configuration from L2 model.
The structure is consistent with the one observed in the experiments and previous L1

models (1, 22, 23).

12
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Supplemental Figure Legends

Figure S1. Schematic demonstration of lateral shift and lateral rotation during the bond

the transition.

Figure S2 Schematic illustration on how to calculate the gap width dg,p and kink position

T from the force-indentation curve.

AU

Figure S3 The calculated v.s. z,, from the simulations corresponding to Figure 2

MT
(panel a) and Figure 4 (panel b-d). The gray area indicates the regions where the

experiments and simulations are not under the same conditions.

Figure S4 Force V.S. Indentation curves for the L1 model (tube only model) at various

AG,, based on the estimated values (-3.2~-5.7 kgT (21)). The plots show the curves for
(a) -3 kgT; (b) -3.5 kgT; (c) -4 kgT; (d) -4.5 kgT; (e) -5 kgT; (f) -5.5 kgT. The simulations

produce either no observable gap, or the gap appears at a very high indentation value (>5

14



nm), with a short the second linear region. (g) The unzipping mechanism that gives rise

to a gap in the F-I curves. The lateral bonds between blue colored tubulins are broken.

Figure S5 Effects of MT length on mechanical properties in the linear region. (a) One
conformation of a 200 nm MT with energy plot under an AFM tip pressed at an
indentation distance of 7.4 nm. Both the MT physical deformation and the energy
changes indicate that the effects of the AFM tip can only be seen between z = 60 ~ 140
nm, which is about a 80 nm region along the MT. (b) The F-I curve for an AFM Tip
Radius = 15 nm (upper panel) and 45 nm (lower panel), and MT length ~24 (circle), 40
(square), 80 (diamond) and 160 (triangle) nm, respectively. (c) Calculated x« versus MT
length with AFM tip radius R = 15, 20, 25, 35, and 45 nm. (d) Calculated « versus tip
radius R with MT length = ~ 40, 80, 120, and 160 nm. (e) The gap starting position I'

versus MT length at AFM Tip radius R = 15, 20, 25, 35, and 45 nm.

Figure S6 Effects of AFM tip position shifting along both x (lateral direction, a-c) and z
(longitudinal direction, d-f). (a) Selected MT configurations for tip center at the middle of
the MT (z~=half of MT length) and x= 0 and -7 nm. (b) End-on view of part of the MT
wall before the AFM tip reaches the wall. The AFM tip is pressed down along the
negative y direction. When the starting position of the AFM tip moves from x=0 toward
negative x direction, monomers 1, 2 and 3 contacts the AFM tip sequentially. (c) Spring
constant x (slope of linear region of Force v.s. Indentation curve) v.s. shift distance

along x direction of AFM tip (Ad, ). Inset: zoomed in plot for « at -5.5<Ad_<-3 nm. (d)

I'( recorded first kink position on Force v.s. Indentation curve) v.s. Ad, . (e) Several MT

conformations at indentation = 7 nm for Tip Position change from central = 0, 40, and 80

nm. (f) Spring constant « (Slope of linear region of Force v.s. Indentation curve) v.s.

15



shift distance along z direction of AFM tip from the middle of the MT (Ad. ). (g) I (The

recorded first kink position) v.s. Ad. .

Figure S7 Illustration of the coupled system of cantilever and MT wall. The cantilever is
treated as linear spring and the MT wall is a non-linear spring. zs is defined as the
deformation of cantilever spring, zapm is the upper position of cantilever, zyr is the upper
position of MT wall. The lower position of the MT wall is immobilized on the glass. The
left panel represents the relaxed status of the system and the right panel represents the

status with force exerted on it.

Figure S8 Simulated tip structure for disassemble stage for L2 model.

Figure S9 The Parameter sensitivity analysis on “gap” behavior for Tube-only model. A)
the slope contour; b) the Kink position contour. The parameters producing non-physical
values are washed out. The overlaps of A and B are parameters which can generate both

linearly reasonable response and kink like behavior.
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Microtubules Methods Flexural Rigidity (x Temperature References
10%* Nm?) ‘c)
Pure MT Buckling force 7.9 33 (5)
Hydrodynamic flow 8.5 37 (11)
Hydrodynamic flow 35.8 37 (7)
Relaxation (RELAX) 3.7 22-25 )
Relaxation (WIGGLE) 4.7 22-25 3)
Thermal fluctuation 26.0 37 (8)
Thermal fluctuation 4.6 37 (11)
Thermal fluctuation 26.5*% 37 (7
Thermal fluctuation 18.5 2
Thermal fluctuation 13.7-27.0* 23 4)
Paclitaxel-stabilized | Buckling force 2.0 33 (5)
MT Buckling force 2.0-22 37 (6)
Relaxation (RELAX) 1.0 22-25 3)
Relaxation (WIGGLE) 1.9 22-25 3)
Thermal fluctuation 215 25 3)
Thermal fluctuation 32.0 37 (8)
Thermal fluctuation 2.4 37 (12)
Thermal fluctuation 0.47~21.5*" 37 (9)
Electric force 0.34+" 37 (10)

*These values of El were derived from measured persistence length l,, with El=k,T1,-

“the corresponding MT length is 2.6~47.5 pum.

*the MT length is ~0.1 um

Table S1 Flexural Rigidity Measurements
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Fig S1
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Fig S2
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Fig S3
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Fig S5
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Fig S7
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Fig. S8
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Fig. S9
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