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C. elegans strains, plate preparations and recordings

Wild type N2 (Bristol) worms were maintained using standard culture methods and fed with
the Escherichia coli strain OP50. Analyses were performed on hypochlorite-synchronized young
adult animals grown at 25◦C. Agar plates were placed in the fumehood for 30 minutes to remove
excessive moisture on agar surfaces. Worms were transferred to 6 cm NGM plates with no food 2
minutes before recording. Recordings of C. elegans crawling were obtained using a Leica MZ16FA
microscope equipped with a Leica DFC 340 FX camera at 15 fps. The N2 strain was obtained from
the Caenorhabditis elegans Genetic Stock Center (CGC).

Groove shape measurement using optical interferometer

We transfer one nematode C. elegans onto an agar plate. After 10 minutes, measurements of the
groove shape left by the crawling nematode are conducted with a Zygo NewView 6300 Interferom-
eter. This device scans the agar surface with white light, and has a sub-micron lateral resolution
with a single nanometer height resolution. We use 20× external objectives for such measurements.
The groove width varies from 26 to 30 µm and the depth of the groove ranges from 0.9 to 1.2 µm.
For our analysis, we assume the groove is 1.0 µm deep and 28 µm wide, which are the mean values
from the experiments (Fig. S1).

50 mm

Figure S1: Optical interference patterns formed on an agar plate. The optical interference patterns
are used to measure the depth and width of the groove.

Formulation of the lubrication equations

In this section, we derive the governing equations for the lubrication flow between the nematode
and the substrate. We begin by formulating the continuity and momentum equations, in cylindrical
coordinates for an incompressible two-dimensional (2D) fluid in the absence of body forces:
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Figure S2: Schematic diagram of nematode cross-section and groove. (a) The radius of the nema-
tode cross section and groove are Rw and Ra, respectively. The center of the groove is Oa and the
middle point of the groove arc is O. (b) Detailed illustration of the dashed box shown in (a). The
liquid film thickness is h. The distance from Oa to the position P in the liquid film is r, such that
η = Ra − r. The x-y coordinate is defined as x ≈ rθ and y = η with its origin sitting on O.

Here, the two-dimensional velocity field u is described by its radial (ur) and circumferential (uθ)
components. The fluid pressure is p, and the fluid density and viscosity are ρ and µ, respectively.
In Fig. S2(a), cross-section profiles of the nematode body and the groove are shown. The radius
of the groove and the nematode body are Ra and Rw, respectively. The origin of the cylindrical
coordinate system is set at Oa. A detailed illustration of the thin liquid film is shown in Fig. S2(b),
where the liquid thickness is h = Ra −Rw. The radial distance from the origin Oa to the position
P in the liquid film is r. The distance from P to the groove center O is η = Ra − r. We introduce
the following scalings,

η∗ = η/h, r∗ = r/Ra, t∗ = t/τ ,

u∗r = ur/(δvn), u∗θ = uθ/vn, p∗ = p/(µvn/δh),

where the characteristic speed vn is the nematode normal crawling speed (see main article). The
characteristic time is given by τ = Ra/vn. Here, the scalings for u

∗

r and p
∗ are obtained by balancing

the continuity and momentum equations. The liquid film is O(1) µm, and Ra = 100µm. The
normalized liquid film thickness is δ = h/Ra ≪ 1. We also note that r∗ = 1− δ(1− η) = 1 +O(δ),
such that 1/r∗ = 1 + O(δ). Following our scaling definitions, the momentum and continuity
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equations in cylindrical coordinate are rewritten as,

δu

Rar∗
∂(r∗u∗r)

∂r
+

u

Rar∗
∂u∗θ
∂θ

= 0, (S4)

δu2

Ra

∂u∗r
∂t∗

+
(δu)2u∗r
Ra

∂u∗r
∂r∗

+
δu2u∗θ
Rar∗

∂u∗r
∂θ

− u2

Ra

(u∗θ)
2

r∗
= (S5)

− µu

ρh2
∂p∗

∂r∗
+
µ

ρ

[
δu

R2
ar

∗

∂

∂r∗

(

r∗
∂u∗r
∂r∗

)

+
δu

R2
ar

∗2

∂2u∗r
∂θ2

− δu

R2
a

u∗r
r∗2

− 2u

R2
ar

∗2

∂u∗θ
∂θ

]

,

u2

Ra

∂u∗θ
∂t

+
δu2u∗

Ra

∂u∗θ
∂r∗

+
u2u∗θ
Rar∗

∂u∗θ
∂θ

+
δu2

Ra

u∗θu
∗

r

r∗
= (S6)

− µu

ρh2r∗
∂p∗

∂θ
+
µ

ρ

[
u

R2
ar

∗

∂

∂r∗

(

r∗
∂u∗θ
∂r∗

)

+
u

R2
ar

∗2

∂2u∗θ
∂θ2

+
2δu

R2
ar

∗2

∂u∗r
∂θ

− u

R2
a

u∗θ
r∗2

]

.

The radial distance r is related to η by η = Ra − r. Thus ∂/∂r = −∂/∂η. Following our scaling
choice, ∂/∂r∗ = −∂/(δ∂η∗). We use the relationship between r and η and rearrange Eqs. 4–6 to
obtain,

∂p∗

∂η∗
+ O(δ2, δ3Re) = 0, (S7)
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The nematode’s typical normal sliding speed vn is 1 mm/s (experimentally measured), and the
viscosity and density of the liquid are µ = 10 mPa s and ρ = 103 kg/m3, respectively. The liquid film
thickness is h ≈ 1 µm (1). Here, the Reynolds number is defined as Re = 2ρvn

√
2Rah/µ ≈ 3×10−3,

and the dimensionless gap width δ = h/Ra ≈ 0.01. We neglect terms smaller than or equal to O(δ)
and O(δRe) such that,
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The simplified equations are rearranged into dimensional form to facilitate further computations,
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We see that in the lubrication regime, the effects of geometry curvature are negligible. Hence,
we can rearrange and simplify Eqs. S13–S15 into Cartesian coordinates by writing x = rθ and y = η
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such that,
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We note that x = rθ is an approximation to x = r sin θ, which yields an error less than δ/10 as
|θ| < |θc|. Since the nematode slides laterally along the surface with velocity vn, the boundary
conditions are:

ux(y = 0) = 0, uy(y = 0) = 0,

ux(y = h) = −vn cos θ ≈ −vn, uy(y = 0) = −vn sin θ ≈ −vn dh
dx ,

where θ < 20◦ (see main article). Integrating the lubrication equations with the appropriate
boundary conditions yields the following velocity profiles for ux and uy :
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Note that the expressions for ux and uy satisfy the first three boundary conditions. Using the last
boundary condition (uy(y = h) = −vndh/dx) yields the well-known Reynolds equation
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The effect of surface tension on nematode crawling

Motility on agar surfaces and surfactant treated agar surfaces

The effect of the liquid meniscus attached to the nematode body and surface tension on undulatory
locomotion on surfaces has been previously observed (2). To understand the effect of surface tension
and related contact angle hysteresis on nematode crawling, we use the surfactant Tween 20 to alter
the surface tension of the liquid film on the agar plate and the related contact angle hysteresis
during crawling (3). Tween 20 is relatively non-toxic and has been previously used in bacteria
swarming (4, 5) and C. elegans developmental studies (6). We prepared Tween 20 solutions in M9
buffer. The concentration of Tween 20 in M9 is 8×10−5 M (or approximately 0.1 g/L), which is the
critical micelle concentration (cmc) of Tween 20 (7). We choose Tween 20 M9 solution at cmc to
(i) maximize surface tension reduction (we note that surface tension reaches its minimum at cmc);
(ii) mitigate the effect of surfactant on C. elegans motility.

In experiments, we spread 500 µL of Tween solution on top of an agar plate. The treated agar
plate is then placed inside a fume hood for 30 minutes to remove excessive moisture. The resultant
liquid / air surface tension of the film is approximately 38 mN/m (7), which is 50% smaller than for
pure water (∼71 mN/m). The effect of Tween 20 can be demonstrated by comparing the spreading
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Figure S3: Demonstration of reduced surface tension with Tween 20. We placed 25 µL Halocarbon
oil 27 on Tween 20 treated (left) and standard agar plates (right). The diameters of the drop are
7.7 mm and 5.6 mm, respectively.

radius of 25 µL oil drops (Halocarbon oil 27, Sigma-Aldrich) on a Tween 20 treated plate and a
standard agar plate (See Figure S3). The larger spreading radius on Tween 20 treated agar plate
is due to the reduced surface tension.

We record the motility of C. elegans under the same experimental setup described in the main
text. Nematodes are recorded within 3 minutes after being placed on Tween 20 treated agar plates
to minimize any effect of surfactant on the nematodes. A total of 14 worms were recorded on Tween
20 treated agar plates.

Theoretical estimates of surface tension forces

We also investigate the effects of asymmetric menisci (and surface tension) on nematode motility
by studying the force balance on the nematode body. First, we model menisci surfaces as circular
arcs of different radii (8). The spanning angles of the left and right meniscus (see Fig. S4), from
the nematode body to the bottom liquid film, are denoted φ1 and φ2. The corresponding radii
of curvature of the menisci are R1 and R2, respectively, and the contact angles are ψ1 and ψ2.
The ambient pressure is p = p0, while the pressure values at the left and right boundaries of the
menisci are p = p1 and p = p2. Based on the geometries, we can show that φ1 + ψ1 + θ1 = π and
φ2 + ψ2 + θ2 = π, and the radii of curvature can be formulated as,

R1,2 = Rw
1− cos θ1,2
1− cosφ1,2

= Rw
1− cos θ1,2

1 + cos(ψ1,2 + θ1,2)
. (S22)

Thus, the pressure differences ∆p1 and ∆p2 can be computed from the Young-Laplace equation,

∆p1,2 = p1,2 − p0 = − γ

R1,2
= − γ

Rw

1 + cos(ψ1,2 + θ1,2)

1− cos θ1,2
. (S23)
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Figure S4: Schematic illustration of the liquid menisci attached to the nematode body.

The pressures of the liquid menisci are therefore

p1,2 = p0 −
γ

R1,2
= p0 −

γ

Rw

1 + cos(ψ1,2 + θ1,2)

1− cos θ1,2
. (S24)

Given the pressure distribution on the two sides of nematode, we can now compute the surface
tension force along the normal direction,

Fγ =

∫ θ1

0

p1 sin θ Rwdθ −
∫ θ2

0

p2 sin θ Rwdθ. (S25)

Equation S25 can be integrated and simplified so that

Fγ = γ[cos(ψ2 + θ2)− cos(ψ1 + θ1)]. (S26)

Since it is known that mucin-like glycoprotein fluid coats the nematode’s cuticle (9) and that the
interfacial tension between the liquid film and the mucin coating is very small (<1 mN/m) (10),
we set the contact angles between the liquid film and the mucin coating ψ1 ≈ ψ2 ≈ 0. Hence,
the resulting surface tension force is a function of surface tension γ and the angular span θ of the
menisci so that

Fγ = γ(cos θ2 − cos θ1) = 2γ sin
θ1 − θ2

2
sin

θ1 + θ2
2

. (S27)

Based on direct observations of meniscus spreading on agar surfaces, we set θ1 = 55◦ and θ2 = 45◦.
These values are difficult to measure (11) and we only provide a rough estimate here. Because the
value of θ1 is larger than θ2, Fγ opposes the normal (lateral) motion of the nematode (see Fig. 4).
Note that Fγ = 0 for θ1 = θ2. Using Eq. S27, we compute the normal surface tension force Fγ

to be approximately 0.67 mN/m. For comparison, the normal lubrication force is approximately
2.2 mN/m, where the liquid viscosity µ is 10 mPa s and normal (lateral) speed vn is 1 mm/s.
Surface tension force accounts for approximately 20% of the total propulsive force of a nematode
during crawling. The experiments (See main text) and theoretical estimations provided suggest
that surface tension plays a finite yet limited role on the motility kinematics and on the overall
propulsion forces of C. elegans on agar plates. While the effects of surface tension on C. elegans

motility warrant a more in-depth study, here we will focus our efforts on viscous lubrication forces
which seem to be the dominant component.
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The drag force on the nematode body due to lateral motions

We approximate the outer and inner cylinders with profiles ho = x2/2Ra and hi = h0 + x2/2Rw,
respectively. Thus, the gap width follows as h = hi−ho = h0+(1/2)(R−1

w −R−1
a )x2. We introduce

C = (1/2)(R−1
w −R−1

a )R2
w and e = h0/C such that the gap width may be rewritten as h = C(e+X2),

where X = x/Rw. We note that given the parabolic approximation, the characteristic length scale
is x =

√
2Rwh. Since ∂p/∂y = 0, the partial differential yields ∂p/∂x = dp/dx, and the Reynolds

equation can be rewritten as,
d

dx

(
h3

12µ
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)

= −vn
2

dh

dx
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Since mucin-like glycoprotein fluid coats the nematode’s cuticle (9, 12) which is partly miscible
with water, we assume perfect wetting (i.e., θ1 = θ2 = 0). We estimate the film contact angle
ψ1 = ψ2 = π/4 based on direct observations of meniscus spreading on agar surfaces. The radius of
the nematode cross-section is Rw = 40 µm. The surface tension between the liquid menisci and air
is set at a typical value of γ = 5 mN/m. The meniscus pressure is found to be p2 = −125 Pa.

We integrate the Reynolds equation once,

dp

dx
= −6µvn

h− hm
h3

. (S29)

The symmetry of the meniscus shapes gives boundary condition dp/dx = 0 at x = xm(X = Xm).
Substituting the gap width profile, the Reynolds equation reduces to
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m
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. (S30)

The pressure is then given by
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The boundary condition p = p2 at X = Xm gives

D =
6µvnRw

C2
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mJ2(e,Xm)) + p2. (S34)

We assume the fluid in the gap to be Newtonian such that the 2D stress tensor is given by
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(

−p+ 2µ∂ux

∂x µ(
∂uy

∂x + ∂ux

∂y )

µ(
∂uy

∂x + ∂ux

∂y ) −p+ 2µ
∂uy

∂y

)

. (S35)

7



The fluid drag force opposing sliding along the x-axis follows as

Fx(y = h) =

∫

S
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In the above expression for Fx(y = h), the contribution to lateral resistance arising from (i) the
normal stress component (Fx1) and (ii) the shear stress component (Fx2) can be obtained by
integrating separately each expression. By using the continuity statement (∂vx/∂x+ ∂vy/∂y = 0)
and lubrication assumption of unidirectional flow vx ∼ vn, we arrive at vy ∼ vn

√
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the expression for Fx1, the normal expansion rate µ∂ux/∂x is O(δ
3
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than or equal to O(δ) and carry the integration. We note that h = C(e+X2) and dh = 2CXdX.
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The total lateral resistance force follows as,
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Similarly, the force supporting along y-axis Fy follows as

8



Fy(y = h) =

∫
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The shape parameter is C = 13.3 µm and Xm = sin(π/12) (see main article). The gap width is
h0 = 0.49µm and e = 0.04. The vertical force Fy(y = h) ≈ 3591µvn + 2p2xm. The net resultant
force has two parts, i.e., the lubrication support force (Flub = 3591 µvn), and the capillary force
(Fcap = 2p2xm with p2 < 0).

The normal sliding speed averaged along the nematode body is vn ≈ 0.1 mm/s. The fluid
of viscosity µ = 10 mPa·s, and the lubrication force Flub = 3.6 × 10−3 N/m, while the capillary
force yields Fcap = −3.5× 10−3 N/m. The lubrication force and capillary force are approximately
balanced (Fy ≈ 0), sustaining a stable lubrication layer. We also note the gravity force is negligible
in this situation since G = ρ(πR2

w)g = 5.0 × 10−5 N/m. In sum, we see that the lubrication force
is able to support the nematode body in the gravitational direction.

The drag force on the nematode body due to forward motion

In addition to lateral sliding in the direction normal to the nematode’s longitudinal axis, the
nematode crawls forward along the z-axis. Since h≪ Rw, the configuration is modeled as parallel
shear between two infinite plates. The fluid drag force opposing motion in the z-axis is integrated
from −Rw sin θc to Rw sin θc,

Fz(y = h) = −
∫

S
µ
vt
h
dx (S41)

= −
∫ sin θc

− sin θc

µ
vt

C(e+X2)
RwdX

= µvt
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C

(

2 arctan
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e

)

e−1/2

)

.
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As for a typical tangential crawling speed vt = 0.2mm/s, the tangential drag force is Fz = 6× 10−6

N/m.

The role of the groove in nematode crawling

As the nematode crawls on agar surfaces, it creates and leaves behind a trail of grooves. The
generation of grooves could result from three forces: (a) forces due to surface tension, (b) forces
from liquid lubrication (i.e. shearing) and (c) gravity force of the nematode body. We neglect
gravity forces because they are two orders of magnitude smaller than surface tension or lubrication
forces (see page 9 in supporting material). Lubrication forces, as a way of propulsion, are the main
focus of this manuscript and are discussed in the main text. Here, we discuss forces due to surface
tension.

Surface tension forces acting on the nematode can also create grooves. In order to demonstrate
this process, we offer a simple estimation of the force necessary to deform an agar surface by a
rigid cylinder. Using the Johnson-Kendall-Roberts (JKR) contact mechanics model (13), we find
that an agar surface possessing a shear-modulus of 105 Pa can be deformed by 3 µm under the
action of a surface tension force that is approximately 5× 10−3 N/m. That is, the agar surface can
easily be deformed by the action of surface tension between a cylinder and the liquid film. In our
experiments, we estimate the gravitational force to be approximately 5×10−5 N/m and the surface
tension to be 3.5× 10−3 N/m in the gravitational direction. This surface tension force in along the
gravitational direction does not produce propulsion but it can plastically deform the agar surface.

In additional to forces in the gravitational direction that produces no propulsion, the surface
tension force can also act along the normal direction. This normal direction can create the groove
and provide propulsion. However, we have shown that the normal (shear) component plays a small
role in propulsion (see page 9 in main text, and page 6 under Eq. 27 in supporting material). We
therefore do not consider the groove generating forces to be a major contributor to propulsion.

The computation of the bending force Fb

The nematode generates internal forces which bend its body to undulate and maintain its body
length We note that the measured nematode body is of constant length (1.21±0.04 mm) during
crawling (14, 15). By a force balance along the nematode body, the muscle force ~F can be expressed
as following,

~F (sp, t) = Kb
∂κ(sp, t)

∂s
~n(sp, t) + µ

∫ sp

0

Cn~vn(s, t) + Ct~vt(s, t) ds, (S42)

where the first term represents the elastic force to bend the nematode body and the second term is
the viscous drag force imposed by liquid film. The muscle force ~F is decomposed along the normal
and tangential directions. The tangential component Ft = ~F · ~t maintains the body length, while
the bending force (i.e., the normal component) Fb = ~F · ~n bends the nematode body.

The normal and tangential velocity vectors can be rearranged as ~vt = vt~t and ~vn = vn~n. The
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Figure S5: Illustration of the nematode geometry. Along the body from the head s = 0 to the
tail s = L, at each position the unit normal and tangential vectors ~n and ~t are obtained. At the
position s = sp, the muscle force ~F (sp) is decomposed along the normal and tangential directions.

The tangential component Ft = ~F · ~t maintains the body length, and the bending force (i.e., the
normal component) Fb = ~F · ~n bends the nematode body.

bending force Fb is therefore computed as

Fb(sp, t) = ~F (sp, t) · ~n(sp, t)

= Kb
∂κ(sp, t)

∂s
~n(sp, t) · ~n(sp, t) + µ

(∫ sp

0

Cn~vn(s, t) + Ct~vt(s, t) ds

)

· ~n(sp, t)

= Kb
∂κ(sp, t)

∂s
+ µ

∫ sp

0

Cn vn(s, t) [~n(s, t) · ~n(sp, t)] + Ct vt(s, t)
[
~t(s, t) · ~n(sp, t)

]
ds.

(S43)

Here, we note that due to the nature of the undulatory shape, ~t(s, t) · ~n(sp, t) (s 6= sp) is usually
non-zero, since each segment of the nematode body has a distinct orientation. The computation of
the bending force incorporates both the elastic force part and the viscous force part. As shown in
the text, the phase between the bending force Fb and the bending curvature κ changes as viscous
drag forces vary.
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