Supplementary for: Tonotopic relationships reveal the charge density varies along the lateral wall of outer hair cells

C. Corbitt, F. Farinelli, W.E. Brownell and B. Farrell

S.1. Specific capacitance of lateral wall c_{LW} of OHCs is constant across the cochlea

We write the experimentally derived logarithmic relationships between total voltage-dependent charge, Q_T and lateral wall capacitance C_{LW} and between Q_T and area of the lateral wall, A_{LW} where α_1 , α_2 , β_1 and β_2 are constants determined from fits of the data (see figure legend of Fig. 3) to

$$Q_T = \alpha_1 ln(C_{LW}) + \beta_1 \tag{S.1}$$

$$Q_T = \alpha_2 ln(A_{LW}) + \beta_2. \tag{S.2}$$

If C_{LW} is a linear function of A_{LW} , then the constants of Eq. (S.1) and Eq. (S.2) are related and we can write

$$\exp(\frac{-\beta_1}{\alpha_1}) = \exp(\frac{-\beta_2}{\alpha_2})c_{LW}.$$
 (S.3)

Expressing in terms of β_1

$$\beta_1 = \alpha_1 \frac{\beta_2}{\alpha_2} - \alpha_1 ln(c_{LW}). \tag{S.4}$$

Substituting Eq. (S.4) into Eq. (S.1) and expanding then

$$Q_T = \alpha_1 ln(c_{LW}) + \alpha_1 ln(A_{LW}) + \alpha_1 \frac{\beta_2}{\alpha_2} - \alpha_1 ln(c_{LW}), \qquad (S.5)$$

and simplifying

$$Q_T = \alpha_1 ln(A_{LW}) + \alpha_1 \frac{\beta_2}{\alpha_2}.$$
 (S.6)

We find $\alpha_1=1.296$ pC and $\alpha_2=1.3$ pC (see legend of Figure 3) therefore $\alpha_1 = \alpha_2$ and Eq. (S.6) is equivalent to Eq. (S.2). We find β_1 and β_2 are -0.7010 and -6.689 pC from the relationships shown in Figure 3. We calculate β_1 with Eq. (S.4) and $c_{LW} = 0.01$ pF μ m⁻² and find it is -0.70012 pC which is the same as -0.7010 pC.

S.2. Specific capacitance of basolateral region c_B of OHCs is constant across the cochlea

We now show that c_b is $\approx 0.006 \text{ pF}\mu\text{m}^{-2}$ and constant across the cochlea. We write Eq. (S.1) and Eq. (S.2) in a non-dimensional form

$$\frac{Q_T}{e} = \alpha_3 ln(\frac{C_{LW}}{C_B}) + \beta_3 \tag{S2.1}$$

$$\frac{Q_T}{e} = \alpha_4 ln(\frac{A_{LW}}{A_B}) + \beta_4 \tag{S2.2}$$

where e is the charge on an electron at 1.609×10^{-19} C; C_B and A_B the capacitance and area of the basolateral region and the constants α_3 , α_4 , β_3 and β_4 are now expressed in number of electrons. Once again the constants of Eq. (S2.1) and Eq.(S2.2) are related if c_{LW} and c_B are constant across the cochlea then β_3 is written

$$\beta_3 = \alpha_3 \frac{\beta_4}{\alpha_4} + \alpha_3 ln(\frac{c_B}{c_{LW}}). \tag{S2.3}$$

Substituting Eq. (S2.3) into Eq. (S2.1), expanding and simplyfying then

$$\frac{Q_T}{e} = \alpha_3 ln(\frac{A_{LW}}{A_B}) + \alpha_3 \frac{\beta_4}{\alpha_4}.$$
(S2.4)

We find $\alpha_3 = 8.09 \times 10^6$ electrons and $\alpha_4 = 8.12 \times 10^6$ electrons therefore $\alpha_3 \approx \alpha_4$ and Eq. (S2.4) becomes Eq. (S2.2). We find β_3 and β_4 are 3.924×10^6 electrons and 7.591×10^6 electrons from fits of the data to Eq. (S2.1) and Eq. (S2.2). We calculate β_3 with (S2.3) with c_{LW} and $c_B = 0.01$ and 0.0062 $\mathrm{pF}\mu\mathrm{m}^{-2}$ and find it is 3.7×10^6 pC which is close to 3.924×10^6 where an exact match is obtained if $c_B = 0.00635$ $\mathrm{pF}\mu\mathrm{m}^{-2}$.

We now show that the unit of the constant α is pC in relationships Eq. 8, Eq 12, Eq. (S.1) and Eq. (S.2). We write the non-dimensional expression Eq. (S2.2) as

$$\gamma = \alpha_4 ln(a) + \beta_4 \tag{S2.5}$$

where $\gamma = Q_T/e$ and $a = A_{LW}/A_B$. We determine the derivative of γ with respect to a

$$\frac{\partial\gamma}{\partial a} = \frac{\alpha_4}{a}.\tag{S2.6}$$

Expand

$$\frac{\partial Q_T}{\partial A_{LW}} \frac{A_B}{e} = \alpha_4 \frac{A_B}{A_{LW}} \tag{S2.7}$$

Simplify

$$\frac{\partial Q_T}{\partial A_{LW}} = \alpha_4 \frac{e}{A_{LW}} \tag{S2.8}$$

We now do the same for Eq. (S.2) and take the derivative of Q_T with respect to A_{LW} then

$$\frac{\partial Q_T}{\partial A_{LW}} = \frac{\alpha_2}{A_{LW}} \tag{S2.9}$$

This implies RHS of Eq. (S2.8) and Eq. (S2.9) are equivalent and $\alpha_2 = \alpha_4 e$. We find $\alpha_2=1.3$ and $\alpha_4=8116883$ electrons =1.306 pC where we note that we experimentally determine α_2 to be 1.302 pC. Therefore α_2 and α_1 represent the number of electrons and in Eq. 8, Eq. 12, Eq. (S.1) and Eq. (S.2) exhibit units of pC.

S.3. Determination of $\nu = \frac{ze\delta}{\kappa_B T}$ from the tonotopic relationships

The voltage-dependent capacitance when expressed as a function of the voltage is commonly described with the derivative of the two-state Boltzmann function

$$C_{NL} = \frac{\nu Q_T \exp(-\nu (V - V peak))}{(1 + exp(-\nu (V - V peak)))^2}$$
(S3.1)

where ν is

$$\nu = \frac{ze\delta}{\kappa_B T} \tag{S3.2}$$

and z is valence of the charge, e is charge of the electron, δ is the fraction of the distance travelled across the dielectric, κ_B is Boltzmann's constant and T is temperature. The peak capacitance, C_{peak} is the capacitance when $V = V_{peak}$ and is calculated to be

$$C_{peak} = \frac{\nu Q_T}{(1+1)^2} = \frac{\nu}{4} Q_T.$$
 (S3.3)

We found the experimentally determined A_{LW} increased exponentially with C_{peak} specifically

$$C_{peak} = \alpha_5 ln(A_{LW}) + \beta_5 \tag{S3.4}$$

where α_5 and β_5 are constants determined from the fits to the experimental data (see Figure 3). Equating Eq. (S3.3) into Eq. (S3.4) and rearranging

$$Q_T \approx \frac{4}{\nu} \alpha_5 ln(A_{LW}) + \frac{4}{\nu} \beta_5 \tag{S3.5}$$

The first term of the right hand side of (S3.5) should equate to first term on right-hand side of (S.2)

$$\alpha_2 = \frac{4}{\nu} \alpha_5 \tag{S3.6}$$

substituting values

$$\nu = \frac{4\alpha_5}{\alpha_2} = \frac{9.04 \times 4}{1.3} \approx 27V^{-1}.$$
 (S3.7)

S.4. Prior experimental evidence that C_{peak} is a non-linear function of the measured membrane area of OHC

There is evidence (see reference [10]) that the maximum non-linear capacitance varies non-linearly across the guinea pig cochlea. In Figure 2a of reference [10] the relationship between $\frac{C_{peak}}{C_L}$ and the length of the OHC, l was described by a linear function although the constants of the relationship were not provided. We write the relationship with slope and intercept of α and β

$$\frac{C_{peak}}{C_L} = \alpha l + \beta \tag{S4.1}$$

where the linear capacitance, C_L was described in terms of l with

$$l = 2.9 \times C_L - 0.24. \tag{S4.2}$$

Substituting Eq. (S4.2) into Eq. (S4.1)

$$\frac{C_{peak}}{\frac{l+0.24}{2.9}} = \alpha l + \beta \tag{S4.3}$$

and expressing in terms of C_{peak} then

$$C_{peak} = \frac{l+0.24}{2.9} \times (\alpha l + \beta). \tag{S4.4}$$

Expanding

$$C_{peak} = \frac{\alpha}{2.9} \frac{l^2}{1} + \frac{0.24}{2.9} [\alpha l + \frac{\beta l}{0.24}] + \frac{0.24}{2.9} \frac{\beta}{1}.$$
 (S4.5)

If we write Eq. (S4.5) in terms of C_L where the constants $\alpha_1 = \frac{1}{2.9}$ and $\beta_1 = \frac{0.24}{2.9}$ then Eq. (S4.5) becomes

$$C_{peak} = \alpha \alpha_1 \times l^2 + [\beta_1 \alpha + \beta \alpha_1] \times l + \beta \beta_1.$$
(S4.5)

In terms of the measured area, A_m (Eq. 4 of main text) Eq. (S4.5) becomes

$$C_{peak} = \alpha \alpha_1 \times \frac{(A_m)^2}{(2\pi r)^2} + [\beta_1 \alpha + \beta \alpha_1] \times \frac{A_m}{2\pi r} + \beta \beta_1$$
(S4.6)

and C_{peak} is a quadratic function of the OHC length and area, which is clearly non-linear.

Figure S.1. Charge density calculated on a cell-by-cell basis assuming uniform distribution of charge in the lateral wall. The lines represent the reciprocal relationship for unconstrained (solid line, $\alpha = 84,055 \ e/\mu m \beta = 9,625 \ e/\mu m^2$, R² = 0.203) and constrained fits (dashed line, $\alpha = 284,305 \ e/\mu m$). Similar weak fits are found for linear, log and exponential functions.

Table S.1	
Parameter	Abbreviation
Constants of the relationships	α, β
Area: Membrane, Lateral wall, Non-	$A_{M,A_{LW,A_{NL,}}}$
lateral wall region, Basolateral region,	$A_{B,} A_{CP,} A_{SB}$
Cuticular plate, Stereocilia bundle	
Capacitance: Total, Peak, Linear,	$C_{T}, C_{peak}, C_{L},$
Voltage-dependent, Non-lateral wall	C_{NL} , \dot{C}_{NLW} , C_{B} ,
region, Basolateral region, Cuticular	$C_{CP,} C_{SB,} C_{NB}$
plate, Stereocilia bundle, Non-bell	
Specific capacitance: Lateral wall,	$\mathcal{C}_{LW}, \mathcal{C}_{B}, \mathcal{C}_{CP},$
Basolateral region, Cuticular plate,	c_{SB}
Stereocilia bundle	
Fraction of distance traveled across the	δ
dielectric	
Charge of the electron	e
Frequency	f
Force	F
Boltzmann's constant	κ_B
Length: Total cell, Lateral wall	l,L
Pressure	P
Charge	q
Maximum voltage-dependent charge	Q_T
Resistance: Series, Membrane	R_{s} , R_m
Cell radius	r
Peak density of lateral wall	ρ_{LW}
Charge density of lateral wall	σ_{LW}
Temperature	Т
Voltage	V
Slope factor from fit to Boltzmann	v
Valence of the charge	Z

Function	α	<i>p</i> -value	β	<i>p</i> -value	\mathbf{R}^2
1. $Q_T = (\alpha) \ln(A_{LW}) + \beta$	1.300 (0.145)	< 0.0001	-6.689 (1.040)	< 0.0001	0.658
$Q_T = (\alpha)(A_{LW}) + \beta$	0.001 (0.0001)	< 0.0001	1.017 (0.220)	< 0.0001	0.603
$Q_T = (\alpha)(A_{LW})$	0.0017 (0.00007)	< 0.0001			0.401
2. $Q_T = (\alpha) \ln(C_{LW}) + \beta$	1.296 (0.117)	< 0.0001	-0.701(0.310)	0.029	0.744
$Q_T = (\alpha)(C_{LW}) + \beta$	0.112 (0.011)	< 0.0001	0.949 (0.189)	< 0.0001	0.693
$Q_T = (\alpha)(C_{LW})$	0.1646 (0.006)	< 0.0001			0.509
3. $C_{peak} = (\alpha) \ln(A_{LW}) + \beta$	9.04 (1.09)	< 0.0001	-46.262 (7.867)	< 0.0001	0.619
$C_{peak} = (\alpha)(A_{LW}) + \beta$	0.008 (0.001)	< 0.0001	7.270 (1.632)	< 0.0001	0.575
$C_{peak} = (\alpha)(A_{LW})$	0.0118 (0.0005)	< 0.0001			0.375
4. $C_{peak} = (\alpha) \ln(C_{LW}) + \beta$	8.918 (0.934)	< 0.0001	-4.352 (2.466)	0.085	0.684
$C_{peak} = (\alpha)(C_{LW}) + \beta$	0.768 (0.090)	< 0.0001	7.022 (1.475)	< 0.0001	0.636
$C_{peak} = (\alpha)(C_{LW})$	1.158 (0.04)	< 0.0001			0.440

Table S.2: Comparison of fitting different tonotopic relationships to the lateral wall data.

Parameter	Values
c_{LW} , (pF/ μ m ²)	0.010 (0.0007)
c_{LW} per cell, (pF/ μ m ²)	0.010 (0.0017)
σ_{LW} , (pC/ A_{LW})	1.30 (0.15)
ρ_{LW} , (pF/ A_{LW})	9.04 (1.09)
A_B , (μ m ²) *	437 (70)
C_{NLW} , (pF)	5.17 (0.64)
Weight (grams)	580 (45)
Diameter of OHC (µm)	10.93 (1.77)

Table S.3. OHC parameters for adult male[‡]

*Values calculated from Q_T versus A_M (Table 1, function 4) *The numbers in parenthesis are the standard deviation of the estimates