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1 Comparison of cFL and other modeling formalisms

Numerous frameworks have been proposed by ourselves and others to formally train a biological
network to data (e.g. artificial neural networks [1], probabilistic graphical models [2,3], and logic
networks [4,5]). Our approach here is distinct from these because we base our models solely on
prior knowledge using reasonable default parameters. While other frameworks could potentially be
used in this manner, we argue that cFL logic models are a more attractive means for quickly and
efficiently constructing a reliable model because they use logic operations that relate naturally to
a linguistic description and yield interpretable results.

The observation that conclusions drawn from cFL models are abstract and species values must be
considered relative to those of other species in the model points to a limitation of the technique.
Thus, if the goal of a study is to predict an absolute parameter of a system (i.e. most effective Kd
of a drug, recommended dose, etc.), one should use a modeling approach that is able to directly
relate to physical properties (such as differential equations). However, a mechanistic differential
equation model requires more precise knowledge of both the mechanisms and parameters governing
system behavior. While default parameters could be assumed for DEs as we exemplified for our cFL
models here, estimates for DE parameters must be at least approximately correct because different
parameters regimes can yield systems with very different behavior [6]. Thus, we conclude that
while cFL models are limited in that they can only make qualitative predictions, they require less
precise knowledge of the system, making them an attractive alternative to mechanistic DEs.

Because the quantities resulting from cFL models are abstract, one could raise the question of
whether modeling with ostensibly simpler Boolean or discrete logic would be sufficient for the
analysis we present here. Indeed, cFL models use traditional AND, OR, and NOT gates to specify
the topology of a network, such that tools developed for either analysis are readily interchangeable.
However, the use of cFL is justified for several reasons. First, discrete models lack transfer functions
such that analyses similar to that shown in main text Figures 6C and D could not easily be
performed with a discrete model. Furthermore, analysis with cFL is no more difficult than one
with discrete logic because of the simplicity of the cFL formalism and ease of specifying a model
and its transfer functions in Q2LM. Moreover, cFL modeling allows one to explore the effects of the
amount of perturbation, different implementations of perturbations, and the effect of noise in the
transfer function parameters. Such explorations allow one to ascertain whether the predictions are
robust to variations of the model, which if confirmed, increases confidence in their reliability.

2 Supplemental Experimental Methods

To validate the Q2LM model, we measured the ability of wild-type granulocyte colony-stimulating
factor (gGCSF) or a mutant form (G43, D113H mutation) to promote hematopoiesis in 5-fluorouracil
(5FU)-treated mice, similar to previously reported methods [7,8]. Briefly, B6D2F1 mice (Jackson
Laboratories) were divided into seven groups of five mice each (n=35). One group of animals served
as a control group and received no 5FU or colony stimulating factor. The rest of the groups were
treated with 150 mg/kg 5FU for 24 hours prior to treatment with colony stimulating factor (gGCSF
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or G43, injected i.p in phosphate buffered saline, supplemented with 0.1% BSA) for 9 days. Daily
doses of 25 or 50 g/kg of gGCSF or 25, 50, or 100 g/kg were administered separately to a group
of animals. After dosing of colony stimulating factor was completed, animals were sacrificed and
blood collected by cardiac puncture. After hemolysing red blood cells using a standard lysis solu-
tion (10 mM potassium bicarbonate, 150 mM ammonium chloride, 0.1 mM EDTA, pH 8.0), white
blood cells were concentrated and cell count performed with a Coulter counter (Beckman Coulter
Instruments). Results are expressed in Main Text Figure 7 as an average cell count plus standard
deviation.

3 Relationship between cFL and mechanistic ODEs

3.1 Introduction

While others have explored the relationship between stoichiometric maps and logic gates [9,10],
these derivations point out the relationship between logic models and ordinary differential equations
(ODEs) based on mass balances. A mass balance is a basic engineering concept based on the law
of conservation of mass. A mass balance simply translates the statement “the rate of change of a
species’ mass in a defined system equals the rate of entry plus the rate of generation minus the rate
of consumption and the rate of exit” into an ordinary differential equation.

The first major concept used in the derivations below is that the updating scheme in a logic model
simulation is analogous to steady-state solution of an ODE. In the simulation of a logic model, each
node is updated based solely on its input nodes’ states at the previous time step and the concept of
time is not considered. In an ODE framework, this is akin to evaluating each species as if it were
at psuedo-steady state.

The figures depicting these systems (Figures 1, 3, and 6) also point out important distinctions
between the interpretation of an mechanistic ODE and that of a logic model. In the graphics
that motivate development of an ODE, an arrow generally indicates that the molecular species
at the ‘head’ or ‘input’ of the arrow undergoes some change (i.e. is internalized, becomes bound,
gets degraded, etc.). However, in a logic model, these arrows indicate only that the value of one
species affects the value of another. Thus, we should understand the arrows in logic models not as
indication of what happens to the input species, but rather as indications that the value of the input
species (as determined by other nodes) results in some change to the output species’ value.

3.2 Receptor Binding

In a mechanistic ODE modeled with mass action kinetics, a mass balance on bound receptor [C]
depicted in Figure 1 can be written with Equation 1:

d[C]
dt

= kf [R][GCSF ]− kr[C]− kendocyt[C] (1)
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Figure 1: Binding of GCSF to its recepter. (a) graphical depiction for development of the mass balance (b)
logic gate representation of this interaction
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Due to the relationship between the updating scheme of a logic model and steady state described
in Section 3.1, we set the derivative in Equation 1 to zero and solve for the steady state value of
[C] (CSS).

0 = kfRSSGCSFSS − krCSS − kendocytCSS (2)

CSS =
kf

kr + kendocyt
RSSGCSFSS (3)

From Equation 3, we note that the pseudo-steady state value of [C] (CSS) is a function of the product
of RSS and GCSFSS . This dependence is plotted as a heat map in Figure 2a. From this plot, it
is clear that this relationship between species corresponds to an AND gate in logic terms. A heat
map of the Boolean logic AND gate truth table (Figure 2b) is a very abstract representation, but
the cFL AND gates shown (Figure 2 c and d) demonstrate a closer relationship to the ‘biochemical
truth table.’ Thus, we see that the AND gate relating pNR and bloodGCSF to pNboundGCSF is
directly related to the steady-state solution of the mechanistic ODE based on mass action kinetics.
Additionally, the mass-balance concept of “losing” [C] due to endocytosis does not change the
functional form of the relationship of its steady state value to RSS and GCSFSS .
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Figure 2: Heat map of CSS as a function of varying amounts of GCSFSS and RSS make up ‘Truth tables’ of
binding as modeled by (a) Equation 3, (b) Boolean logic AND gate, (c) cFL AND gate evaluated
with the min operator, and (d) cFL AND gate evaluated by the prod operator. For evaluation
of Equation 3 values of Receptor and GCSF were considered to be scaled between zero and one.
For cFL evaluation, transfer functions with a gain of 1, EC50 of 0.5, and hill coefficient of 3 were
assumed. The truth table in (a) could be directly replicated with cFL by using a linear transfer
function with slope = 1 and intercept = 0.
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3.3 Receptor Degradation

To model endosomal degradation, we do not explicitly model all of the processes that occur mech-
anistically (endocytosis of both bound and unbound receptors, disassociation, etc). Rather, we use
the abstract concept of “Substance” (Subst) shown in Figure 3 to lump all processes into one mass
balance (equation 4):

dSubst

dt
= Substin − Substdegraded − Substrecycled (4)

Using a “fraction degraded” constant (fdeg) to relate Substin and Substdegraded, we obtain

dSubst

dt
= Substin − fdegSubstin − Substrecycled (5)

Again, we use the steady state description and set the derivative in Equation 5 to zero and solve
for the steady state value of Substrecycled.

Substrecycled = Substin(1− fdeg) (6)

From Equation 6, we again note that the steady state value of Substrecycled is a function of the
product of Substin and (1− fdeg). In logic terms, the product again corresponds to an AND gate
truth table where “1−” in 1 − fdeg indicates inhibition (Figure 4). Thus, the AND NOT gate
relating pNboundGCSF and pNdegGCSF to pNrecGCSF is related to the steady-state solution
of an abstracted ODE describing the mass balance of these entities. In this case, the mass-balance
concept of “losing” substance due to degradation did change the functional form of the relationship
of the amount of substance recycled because this ‘loss’ is reflected in the logic gate by the inhibition
of recycling by degradation.

Figure 3: Degradation of bound receptor. (a) graphical depiction for development of the mass balance (b)
logic gate representation of this interaction
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Figure 4: Heat map of Substrecycled as a function of varying amounts of Substin and fdeg make up ‘Truth
tables’ of recycling and degradation as modeled by (a) Equation 6, (b) Boolean logic AND gate,
(c) cFL AND gate evaluated with the min operator, and (d) cFL AND gate evaluated by the prod
operator. Equations evaluated as described in Figure 2
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In Equation 5, we assumed that “fraction degraded” was a constant for the derivation of Equation
6. However, in Figure 3b, it is clear that the Substdegraded species depends on Substin in the
logic description. Thus, when we plot the level of Substrecycled as a function of only Substin, we
notice dissimilarities in the resulting relationship (Figure 5). These dissimilarities are caused by
the fact that the amount of faction of substance degraded is dependent on Substin in the logic
case, while it is a constant in Equation 6. It is unclear which assumption is correct in the actual
biological system, and we can model the relationship specified by Equation 6 in a logic model by not
having an additional ‘degradation’ species and instead modelling the logic as a direct interaction
between Substin and Substrecycled the ‘gain’ of the transfer function relating them analogous to
1 − fdeg. However, this further level of abstraction hinders our ability to alter the ‘degradation’
species directly. Additionally, it is unclear if fdeg is actually independent of the amount of substance
presence in the biological setting. Nonetheless, we repeated the work presented in the main text
and found that the interpretation of the results is the same regardless of the logic description used
for the endosomal degradation process.
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Figure 5: Substrecycled as a function of varying amounts of Substin modeled b (a) Equation 6, (b) cFL AND
gate evaluated with the min operator, and (c) cFL AND gate evaluated by the prod operator. In the
derivation based on mass balances (a), the variable fdeg is considered a constant. In those derived
from the logic gate, we vary the gain of the transfer function relating Substin and Substdegraded

and consider this gain to be fdeg
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3.4 Amount of GCSF in the blood: an example where the logic gate and
mass-balance are not analogous

Figure 6: Processes affecting GCSF in the blood. (a) graphical depiction for development of the mass balance
(b) logic gate representation of this interaction
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We now turn to an example where the relationship between the proper logic gate and mass-balance
based ODE is not analogous. A simplified mass balance for GCSF in the blood (Figure 6) is shown
in Equations 7 - 8. The ‘logic’ of the summation in Equation 8 would normally be an OR gate.
However, in the construction of our logic model, we found that an AND gate was necessary to
correctly model the logic of the bloodGCSF species because presence or absence of all of the input
species to this gate can limit the value of bloodGCSF. In this case the mass balance and logic gate
are not analogous. Perhaps one clue that they will not be directly related lies in Equations 7 - 8. In
these equations, the two terms denoting the ‘appearance’ of GCSF in the blood were not dependent
on a species. Rather, they were further abstracted and given as rate constants independent of other
species. Additionally, the contribution of ‘binding’ is abstracted and modeled as simply a lumped
rate rather than including the biochemical steps of association and dissociation. This abstraction
at the level of rates of processes serves as an indication that this mass balance does not describe
relationships between species we include in our logic model and bloodGCSF, and thus, it will not
be directly relatable to our logic model.

dGCSFBlood

dt
= kdose + krec − kbindGCSFBlood − kclearanceGCSFBlood (7)

GCSFBlood,SS =
kdose + krec

kclearance + kbind
(8)

In order to correctly deduce the logic describing the bloodGCSF species, we instead turn to truth
tables describing how we believe the species to relate to other species’ values. We first recognize
that initially, only the dose and clearance values determine the value of bloodGCSF (because at
the beginning of the simulation, recycling has not yet been calculated and is thus the initial value
of Not-A-Number). Thus, we will initially determine how bloodGCSF depends on the dose and
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clearance species (Figure 7a) by examining the truth table for the dependence of bloodGCSF on
limiting values (i.e. zero and one) of each input species (Figure 7c). We first note that dose is
required for bloodGCSF to be ‘on’. Thus, we deduce that when dose is zero, bloodGCSF is also
zero (Figure 7d). Next, we note that bloodGCSF is limited by clearance. Thus, we fill in the
remaining two entries for the truth table (Figure 7e). This gate corresponds to an AND NOT gate
(Figure 7b).

Next, we consider how bloodGCSF will depend on recycling after its value has been calculated
(Figure 7f and h). The dependence on dose and clearance remains the same, so we can fill in many
entries in the truth table (Figure 7i). Finally, we note that recycling is now required for bloodGCSF
to remain ‘on’. Thus, we can fill in the remaining two entries of the truth table (Figure 7j) and
ascertain that the recycling species should be an input to the AND gate (Figure 7g).

From this example, we see the importance of considering both the interactions between the species
as well as how the species will be treated during simulation. As it is sometimes difficult to anticipate
all potential factors that should be considered, we emphasize the importance of model validation
at the onset of a project as well as repeatedly returning to plots of how the species’ values evolve
in the course of simulation to check that no artifacts have arisen. For the GCSF example, during
the course of analysis, we found that the inclusion of an additional node, ‘bodyGCSF’ (Main
Text Figure 5b), was necessary in order to ensure that the model behaved properly under a few
conditions where boundGCSF was fixed as a stimulation perturbation (Main Text Figure 7b). Such
cases underscore the importance of model validation and highlight the benefit of being able to easily
‘follow the logic’ during model simulation to enable facile model troubleshooting.
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Figure 7: Determining the logic controlling the bloodGCSF node.
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Figure 8: Simulation Procedure Pseudo-Code

Main Simulation: 
 
Set initial value of species to NaN 
Set stimuli values based on scenario file 
 
While speciesʼ values havenʼt converged or the number of steps is less than the 
maximum 

Calculate the value of all species given the value of their inputs (using transfer 
functions) 

Evaluate AND Logic 
Evaluate OR Logic 
Overwrite stimulated speciesʼ values with maximum of their simulated value or that 

given in the scenario file 
Multiply inhibited speciesʼ values by their percent inhibition 
Store speciesʼ values 

 
Solution for oscillating species: 
 
If a species had not converged in some condition  

For those conditions 
Set initial guess of solver to be equal to the final value for species that stabilized 

and the average of some predefined number of simulation steps for those 
that didnʼt stabilize 

Solve system of equations specifying network (a file with that system of 
equations is written by Q2LM for both min/max and sum/prod when the 
model is loaded) 

Store solution as final value 

4 Simulation Procedure for Determining Steady State Value of
Oscillating Species

Figure 8 describes the procedure developed to calculate the steady state of oscillating species by
solving a system of equations. To solve the system of nonlinear equations for cases when species’
values are observed to oscillate, we use the fsolve function in MATLAB. This function requires a
default initial guess for species values. Depending on the value of the initial guess, the solver will
return one of multiple possible roots. In order to return the root corresponding to the steady state
of the simulation, the initial guess for each species is determined from the simulated values. Basing
the initial guess on simulated species’ value is key, as the solution to the equations using a default
initial guess not based on simulation results can vary greatly depending on the default initial guess
chosen.

12



5 Supplementary References

[1] Friedman, N., Inferring cellular networks using probabilistic graphical models. Science 2004,
303, 799-805.

[2] Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian
analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005,
21, 741-753.

[3] Lancashire, L. J., Lemetre, C., Ball, G. R., An introduction to artificial neural networks in
bioinformatics–application to complex microarray and mass spectrometry datasets in cancer studies.
Brief Bioinform 2009, 10, 315-329.

[4] Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training
signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of
liver cell responses to inflammatory stimuli. PLoS Comput Biol 2011, 7, e1001099.

[5] Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R., et al., Discrete logic mod-
elling as a means to link protein signalling networks with functional analysis of mammalian signal
transduction. Mol Syst Biol 2009, 5, 331.

[6] Klinke, D. J., 2nd, Signal transduction networks in cancer: quantitative parameters influence
network topology. Cancer Res, 70, 1773-1782.

[7] Moore, M. A., Warren, D. J., Synergy of interleukin 1 and granulocyte colony-stimulating factor:
in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil
treatment of mice. Proc Natl Acad Sci U S A 1987, 84, 7134-7138.

[8] Sheding, S. Media, J.E. Nakeff, A. Influence of rhG-CSF scheduling on megakaryocytopoietic
recovery following 5-fluorouracil-induced hematotoxicity in splenectomized B6D2F1 mice. Stem
Cells 1998, 16, 144-151.

[9] Klamt S., Saez-Rodriguez J., Lindquist J.A., Simeoni L., Gilles E. D. A methodology for the
structural amd functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006,
7, 56.

[10] Samaga R., Saez-Rodriguez J., Alexopoulos L. G., Sorger P. K., Klamt S. The logic of
EGFR/ErbB signaling: Theoretical properties and analysis of high-throughput data. PLoS Com-
putational Biology 2009, 5, e1000438.

13


