Supplementary Information

Involvement of *RDR6* in short-range intercellular RNA silencing in *Nicotiana* benthamiana

Cheng Qin^{a†}, Nongnong Shi^{a,b†}, Mei Gu^{c†}, Hang Zhang^{b,d}, Bin Li^a, Jiajia Shen^a, Atef Mohammed^{b,e}, Eugene Ryabov^b, Chunyang Li^{b,d}, Huizhong Wang^a, Yule Liu^f, Toba Osman^{b,e}, Manu Vatish^c and Yiguo Hong^{a,b*}

^aResearch Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. ^bWarwick HRI, University of Warwick, Warwick CV35 9EF, UK. ^cClinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK. ^dChengdu Rongsheng Pharmaceuticals, Chengdu 610041, China. ^eDepartment of Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt. ^fSchool of Life Sciences, Tsinghua University, Beijing 100084, China.

*Correspondence and requests for materials should be addressed to Y. H. (yghongabc@googlemail.com, yiguo.hong@hznu.edu.cn or yiguo.hong@warwick.ac.uk)

[†]These authors contributed equally to this work.

Supplementary Table S1	P values of Student's t -tests ¹ .
------------------------	---

Comparisons	$RDR6^2$	TCV	
Mock			
Nb vs NbRDR6i	0.0001 (Nb > NbRDR6i)	-	
GFP16c vs GFP16c/RDR6i	0.0003 (GFP16c > GFP16c/RDR6i)	-	
<u>TCV-GFP∆CP</u>			
Nb vs NbRDR6i	0.0001 (Nb > NbRDR6i)	0.085 ³	
GFP16c vs GFP16c/RDR6i	0.0001 (GFP16c > GFP16c/RDR6i)	0.31 ³	
Nb vs GFP16c	-	$0.0037 (Nb > GFP16c)^4$	
NbRDR6i vs GFP16c/RDR6i	-	0.0001 NbRDR6i > GFP16c/RDR6i ⁴	

¹Student's *t*-tests were carried out between the *RDR6* mRNA levels of wild-type (Nb) and *RDR6i* (NbRDR6i) *N. bentthamiana* plants, and that of GFP16c and GFP16c *RDR6i* (GFP16c/RDR6i) plants. For the TCV RNA, student's *t*-tests were performed between Nb and NbRDR6i, GFP16c and GFP16c/RDR6i, Nb and GFP16c, as well as NbRDR6i and GFP16c/RDR6i. Plants were mock-inoculated or inoculated with TCV-GFP Δ CP.

²RNAi significantly down-regulated *RDR6* expression.

 3 Knock-down of *RDR6* gene expression by RNAi had no impact on accumulation of TCV-GFP Δ CP RNA in plants.

⁴Virus-induced RNA silencing significantly reduced the TCV-GFP Δ CP RNA levels. RNAimediated inhibition of *RDR6* did not affect intracellular RNA silencing.

	Transgene-induced RNA silencing ⁸⁻¹²	Virus-induced RNA silencing (This study)	
RNA silencing trigger	Transgene-originated Hairpin RNA	Viral RNA	
Cell types	Companion to parenchyma	Epidermal to epidermal, mesophyll	
Short-range spread	10 – 15 cells	6 - 10 cells	
RDR6 gene	Independent	Dependent	
Mobile signal	21-nt siRNA	unknown	
Other factors	RDR2, NRPD1a	Virus movement proteins ¹⁴	
Plant species	Arabidopsis thaliana	Nicotiana benthamiana	

Supplementary Table S2 Two types of short-range intercellular RNA silencing

Primers	Sequences $(5^{\circ} - 3^{\circ})$	RNA Targets
NbEF1a-qRT-F	TGCCTTGTGGAAGTTTGAGACC	EF1α
NbEF1a-qRT-R	GGTGGAGTCAATAATCAGGACAGC	EF1α
NbGAPDH-qRT-F	AGCTGGTGCTGATTTCGTTGTG	GAPDH
NbGAPDH-qRT-R	GAGCAGAGATCACAACCTTCTTGG	GAPDH
TCV-qRT-F	CGGAATTGAGTTCAGCGTCCTTCCG	TCV
TCV-qRT-R	GCAGGAGGGCCACCATTTAC	TCV
NbRDR6-qRT-F	CTTTGGATGAGAAGTGCCTA	RDR6
NbRDR6-qRT-R	TTTGGGACAAGCTCAAGTC	RDR6

Supplementary Table S3 Specific primers for qRT-PCR assays