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S1 FEATURES OF ASCN PROCESSING
METHODS

Table S1 illustrates the characteristics and differences among the
cited ASCN estimation methods and CalMaTe.

“Illumina” ACNE TumorBoost CalMaTe
Open-source implementation - x x x
Cross-platform - - x x
Applicable w/o matched normals x x - x

Table S1. CalMaTe is the only ASCN processing method that is open
source, cross-platform, and that does not require matched normals.

S2 AVAILABILITY OF CALMATE IN R
The CalMaTe algorithm takes allele-specific SNP signals as input,
or more generally, total copy-number signals (TCNs) and B-allele
fractions (BAFs) from any microarray technology.

The CalMaTe method is implemented in calmate , which is
an open-source R package available on CRAN (http://cran.r-
project.org/). The calmate package provides a high-level application
programming interface (API) for CalMaTe, which plugs into the
Aroma Project framework (http://www.aroma-project.org/) and uses
its data types, as well as a low-level API that uses basic R data
types. One advantage of using the Aroma Project framework is that
all its methods are designed to be bounded in memory, meaning that
any number of arrays can be processed even with limited amount of
RAM (as low as 0.5-1.0 GB). Another advantage is that all results
are persistent so that they are readily available also after restarting
R. The low-level API is made available so that CalMaTe can be
incorporated and used elsewhere, e.g. Bioconductor. Internally, the
high-level API utilizes the low-level API.

∗to whom correspondence should be addressed

S2.1 High-level API for the Aroma Project framework
Here we use the public Affymetrix Mapping250K Sty dataset
GSE12702 (Castro et al., 2009) from GEO to illustrate how
to execute CalMaTe using the R package calmate . To obtain
TCN and BAF signals from the Affymetrix dataset, we
utilize an allele-specific version of the CRMA v2 preprocessing
method (Bengtsson et al., 2009a) available in the aroma.affymetrix
R package (Bengtsson et al., 2008). To apply AS-CRMA v2 (or
short just CRMA v2) on this dataset, do

library("aroma.affymetrix");
csR <- AffymetrixCelSet$byName("GSE12702",

chipType="Mapping250K_Nsp");
dsN <- doASCRMAv2(csR, plm="RmaCnPlm");

Because this will take several minutes per array processed, we
recommend adding argument verbose=TRUE to see progress.
More details on doASCRMAv2() can be found on the Aroma
Project website. The dsN object returned by doASCRMAv2()
contains both TCN and BAF estimates. Contrary to the csR
AffymetrixCelSet object, the dsN object is not specific to a
particular technology, i.e. what follows would be same for, say,
Illumina microarray data.

To calibrate the TCN and BAF estimates obtained above using
CalMaTe do

library("calmate");
cmt <- CalMaTeCalibration(dsN);
dsNC <- process(cmt);

Note that the second line of code only sets up the method, whereas it
is at the last line that CalMaTe is actually performed. Likewise, the
above takes several minutes per array, so adding verbose=TRUE
is useful. The dsNC object returned by process() contains both
TCN and BAF estimates in the same format as input dsN object.

For a thorough example with detailed illustrations on how
to extract and plot the calibrated TCN and BAF estimates, or
the corresponding calibrated ASCN estimates, see the vignettes
available online at the Aroma Project website.

c© Oxford University Press 2012. 1



Ortiz-Estevez et al

S2.2 Low-level API
If TCN and BAF estimates for a set of samples already exist, for
instance by using another SNP microarray technology or another
preprocessing pipeline, then the low-level API of the calmate
package can be used.

Assume that the TCN and BAF estimates are available in R as a
J×2×I array named data, where the first dimension specifies loci
j = 1, . . . , J , the second dimension TCN and BAF, and the third
dimension arrays i = 1, . . . , I . For non-polymorphic loci, BAFs are
not defined, which is represented as a missing value (NA/NaN in R).

With this setup, the J×I TCN matrix for all loci across all
arrays can be obtained as TCN <- data[,1,]. Analogously, the
corresponding BAF matrix is BAF <- data[,2,]. Moreover,
the 2×I TCN and BAF matrix for, say, the 54th locus across
all arrays can be obtained as locusData <- data[54,,].
If this locus is non-polymorphic, then all of the BAF signals in
locusData[2,], which is a vector of length I , are missing
values.

To calibrate these TCN and BAF estimates using CalMaTe do

library("calmate");
dataC <- calmateByTotalAndFracB(data);

The dataC object returned by calmateByTotalAndFracB()
has the same data type and dimension (J×2×I) as data, making
it easy to use in place of data.

If the estimates are available in the ASCN space, these
should be transformed to the TCN and BAF space. Alternatively,
calmateByThetaAB(), which takes ASCN estimates, may be
used. Note that this only works for SNPs, because ASCNs are not
defined for non-polymorphic loci. In other words, it is up to the
user to make sure this function is only used for SNPs and not for
non-polymorphic loci.

As for the high-level API, there are also low-level examples in the
vignettes available online at the Aroma Project website.

S3 CALMATE METHOD
S3.1 SNP-specific crosstalk model
The main assumption of CalMaTe is that cross-hybridization
between alleles is linear and possibly different between SNPs but
preserved across samples. Consider a SNP j = 1, . . . , J , and
let Hc

j be the 2×I matrix with column vectors (CAij , CBij)
T of

the unobserved true ASCNs across all samples i = 1, . . . , I . The
corresponding observed ASCNs Hj can then be modeled as

Hj = WjH
c
j + εj , (S1)

where Wj is an unknown 2×2 crosstalk matrix shared by all
samples, and εj is a 2×I error matrix. In turn, assuming that Wj is
invertible, then

Hc
j = TjHj + ξj , (S2)

where ξj = −W−1
j εj and Tj = W−1

j is a 2×2 matrix that
backtransforms the observed ASCNs (Hj) into true ASCNs (Hc

j)
plus noise. Wj is expected to be diagonally dominant because the
affinity of a probe is larger for its perfect-match DNA than for a
sequence with one mismatch (the other allele). Since a diagonally
dominant matrix is always invertible (Levy-Desplanques Theorem),
Wj can be inverted.

In what follows, we will for simplicity drop SNP index j, i.e. we
will write W instead of Wj , T instead of Tj , Hc instead of Hc

j ,
and so on. This also illustrates that CalMaTe is a method applied to
each SNP independently.

S3.2 Fitting the model
CalMaTe uses a specific subset of S normal samples (R) as a
reference. For the reference set, we have from Equation (S1) that

HR = WHc
R + ε, (S3)

where we add notation R to denote that this is for the reference
samples. Since the reference samples are normal, we expect
the ASCNs of Hc

R to be either (2, 0)T , (1, 1)T or (0, 2)T ,
corresponding to genotypes AA, AB and BB, respectively. For
example,

Hc
R =

[
2 1 . . . 0 1
0 1 . . . 2 1

]
(S4)

with rows representing the two alleles (A and B) and the columns
the S normal samples within the reference set (R). The set of
possible states is small and discrete. For this reason it is feasible
to estimate Hc

R from data (Section S3.2.1) and hence solve for W
(Section S3.2.2). Note that in general there is no such constraint
on Hc, which is key when analyzing non-homogeneous samples
such as tumors. With an estimate of W, and hence T, it is possible
to calibrate observed ASCNs Hc for all samples (Section S3.3).
The more reference samples used, the more stable and precise the
parameter estimates will be, cf. Section S5.4. We recommend to use
S ≥ 6 reference samples.

If no normal samples are specified, all the samples are used as
references, and as explained below we will rely on robustness of the
estimators to obtain a good estimate of W.

S3.2.1 A very simple genotyping algorithm. Consider a particular
SNP in a set (’R’) of S normal samples. The genotype of sample
s = 1, . . . , S can be called from the observed BAF ({βs}) as

Ĥc
s,R =


(2, 0)T if βs ≤ 1/3
(0, 2)T if βs ≥ 2/3
(1, 1)T otherwise,

(S5)

where Ĥc
s,R is column s of matrix Ĥc

R. If there was no genotyping
errors, then the called Ĥc

R would be identical to the true Hc
R.

However, since the genotypes are only used for estimating the
crosstalk parameters, having a few genotyping errors is not critical.

S3.2.2 Estimating crosstalk parameters. Substituting Hc
R with

Ĥc
R and W−1 = T with T̂, we can invert Equation (S3) as

T̂HR = Ĥc
R + ζ, (S6)

where ζ is an error term. This matrix equation can be solved for T̂
by multiplying it by the pseudoinverse of HR. However, since there
may be genotyping errors, we use a robust solver. The solution is
obtained in two steps. Firstly, two subproblems (using constraints
on the sum and the difference of the CNs of the two alleles) are
robustly solved and secondly, the entries of the T̂ matrix are found.
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In what follows, let

T̂ =

[
t11 t12
t21 t22

]
, (S7)

where we, for sake of clarity, also drop the circumflex (”ˆ”) of the
individual entries. Using the example genotypes (assuming no errors
for simplicity), Equation (S6) expands to[

t11 t12
t21 t22

]
HR =

[
2 1 . . . 0 1
0 1 . . . 2 1

]
+ ζ. (S8)

Constraint on allele sums: The sum of the CNs of the two alleles
for the references is expected to be 2. Ignoring the random errors
(ζ), we therefore have

[1 1]T̂HR = [2 . . . 2]. (S9)

Focusing on the product of the vector of ones with the T̂ matrix,

[1 1]

[
t11 t12
t21 t22

]
= [t11 + t21 t12 + t22] = [DE] , (S10)

we can write Equation (S9) as

[D E]HR = [2 . . . 2]. (S11)

Equation (S11) is a linear system of equations in D and E which
can be solved using robust methods. In particular, CalMaTe uses
an iteratively reweighted least squares (IWLS) method, which is
implemented in the rlm() function of the MASS package in R.

Constraint on allele differences: The difference between the
CNs of the two alleles is expected to be either 2, 0, or -2, if the
predicted genotype is AA, AB, and BB, respectively. Because of
this and using the previous example, we have that

[1 − 1]T̂HR = [2 0 . . .−2 0]. (S12)

Expanding the T̂ matrix we get

[1 − 1]

[
t11 t12
t21 t22

]
= [t11 − t21 t12 − t22] = [F G] , (S13)

and therefore we can write Equation (S12) as

[F G]HR = [2 0 . . .−2 0]. (S14)

This system of equations can also be solved using IWLS.
At the end, when both linear systems have been solved for D, E,

F and G, we combine Equations (S10) and (S13) as[
D E
F G

]
=

[
1 1
1 −1

] [
t11 t12
t21 t22

]
, (S15)

from which T̂ follows by inversion

T̂ =

[
1 1
1 −1

]−1 [
D E
F G

]
. (S16)

To conclude, the above procedure provides a robust estimate of T.

S3.2.3 Non-identifiable cases. If, for a particular SNP, all the
normal samples happen to have the same homozygous (AA or BB)
genotype, then it is not possible to obtain affinities of the non-
present allele. In order to handle this special case we constrain the
model by assuming that the crosstalk is symmetric for such SNPs.
In practice, this is done by swapping half of the values of the initial
matrix (assigning the values of the A allele to the B allele and vice
versa) and then calculating the calibration matrix as above.

In addition to the non-identifiable cases, in some cases the robust
linear solver does not converge in a reasonable number of iterations.
In these cases, the software computes the centroid of all the SNPs
that have the same genotype by using the medians of the signals
for each allele. Once the location of the three points (for AA, BB
and AB genotypes) is known, the regression line that links them
using minimum squares is computed. The errors are weighted by the
number of samples within each genotype so that, the regression line
gets closer to the genotype that represents more samples. If one of
the genotypes is missing, the regression line is computed based on
the other two points. If there exists a single point (all the samples
have the same genotype and hence, a non-identifiable case), the
regression line is computed by assuming that the calibration matrix
is symmetric.

S3.3 Calibration
Finally, with an estimate T̂, all samples can be calibrated. The
calibrated ASCNs H̃c can be calculated as

H̃c = T̂H, (S17)

which is a backtransformation that follows from Equation (S2) by
substituting T with T̂ and dropping the error term. We denote T̂
the calibration matrix, because it calibrates the observed ASCNs.
Contrary to the notation of the above parameter estimates, we
use the tilde (“˜”) notation to denote that H̃c contains calibrated
ASCNs.

S4 PERFORMANCE
S4.1 ROC analysis
In order to formally evaluate the influence of CalMaTe on signal
to noise ratio, we have used receiver operating characteristic
(ROC) analysis on several known change points. ROC analysis
was performed as described in Bengtsson et al. (2009a, 2010).
We refer to these papers for a more comprehensive description of
this ROC evaluation. We chose the same change points as those
used for the evaluation of the TumorBoost method (Bengtsson
et al., 2010) in order to facilitate comparison between CalMaTe and
TumorBoost, and interpretation of the results. These change points
are taken from a specific tumor-normal sample: TCGA-23-1027.
They correspond to four common copy number state transitions, and
at one region with no change point (negative control) as summarized
in Bengtsson et al. (2010, Table 1). This evaluation was performed
on hybridization data from the Affymetrix GenomeWideSNP 6
platform as well as the Illumina Human1M-Duo platform. See
the two dedicated ROC Supplementary Notes for comprehensive
results.

Here, we explain in detail how this ROC evaluation has been
carried out for a change point at ∼124Mb on Chr. 2 between a
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normal region, and a region of gain of one DNA copy (Fig. 1
and Fig. S4). This change point corresponds to a change in both
TCN and BAF: we label the normal state (left of the change point)
as “negative”, and the gained state (right of the change point) as
“positive”. We focus on a genomic region surrounding the change
point. For BAF signals, we calculate for each heterozygous SNP j
(the definition of a heterozygous SNP is given and discussed in the
next section) the Decrease in Heterozygosity: DHj = 2|BAFj −
1/2|. DH is appropriate for ROC evaluation purposes because
contrary to BAF its distribution only has one mode, as discussed
e.g. in Staaf et al. (2008); Bengtsson et al. (2010).

Consider a threshold value τ . A SNP j is classified as “positive”
if DHj ≥ τ , and as “negative” otherwise, and we report the true-
positive rate (TPR) and the false-positive rate (FPR) in the region.
We build a ROC curve for DH by plotting TPR against FPR in the
genomic region for each possible value of τ . A ROC curve can be
built along similar lines for TCN, where a locus j is classified as
“positive” if TCNj ≥ τ . Using this strategy, we estimate a TCN
and a DH ROC curve for each method to be compared, e.g. genomic
signals before CalMaTe, and after CalMaTe.

S4.2 Genotypes
Because our ROC evaluation is based on DH (in addition to TCN),
which are only defined for heterozygous SNPs, the evaluation itself
requires that we call genotypes and identify heterozygous SNPs.

First of all, following Bengtsson et al. (2010), we only talk about
genotypes for normal cells. In particular, we don’t define or discuss
the notion of genotype in tumor cells. We define the ”genotype” of
a SNP in a sample as the genotype of this SNP in the germline. A
SNP can only have three genotypes (AA, AB or BB), if we exclude
trisomy and rare cases of copy number polymorphisms in a SNP. A
SNP is said to be heterozygous if its (germline) genotype is AB, and
homozygous otherwise.

The choice of genotyping algorithm is not critical for the
assessement, that is, even a very basic caller will do, because
the assessment itself, as well as the segmentation methods it is
imitating, is rather insensitive to a few genotyping errors (as long as
they are randomly scattered along the genome). More importantly,
in order to make the comparison fair, we keep as much as possible
similar by using the same naive genotyping algorithm (Bengtsson
et al., 2010) for all sets of ASCNs evaluated.

Second, CalMaTe will adjust ASCNs such that the genotype calls
for some SNPs will not be the same before and after calibration.
For the objective of identifying genomic aberrations, potential
genotyping discrepancies are not a concern. We wish to emphasize
that CalMaTe was designed to improve the SNRs along the genome
for the purpose of identifying genomic aberrations and not per
SNP. Because of this, we advice against using CalMaTe ASCNs
for genotype studies per se, e.g. GWAS. Continuing, because of
the above discrepancies in genotype calls, there will be different
sets (and thus different numbers) of heterozygous SNPs and hence
a different set of DH signals available for the ROC analysis. This
means that it is not possible to directly compare the ROC curves
for CalMaTe on the one hand with those of the raw signals and
TumorBoost on the other hand. To overcome this limitation, we
choose to reestimate DH signals from the existing ones at a set
of common loci, which is an idea borrowed from Bengtsson et al.
(2009b). Specifically, we split the genome into non-overlapping bins

of a certain size (e.g. h = 25kb in the example below) and calculate
the mean DH in each bin. This approach asserts that the resulting
ROC curves are objectively comparible across methods, while still
making use of all available data.

Note that the evaluation of TCN does not require genotype calls,
as it is defined for any SNP and any CN locus. In order to make
the ROC curves for TCN comparable with the ROC curves for DH,
we also smoothed the TCN signals using the same bins (“same
resolution”) as for DH.

S4.3 Results of the ROC analysis
Figure S1 illustrates the results of the ROC analysis described
above for a change point between a normal and a gained region
on Chromosome 2 of sample TCGA-23-1027, for a bin size of
h = 25kb. Results for other bin sizes and change points, as well
as for both Affymetrix and Illumina, are given in the dedicated
Supplementary Notes. The general conclusion is that, with CalMaTe
there is more power to detect a given change point than without, but
also than with TumorBoost.

Fig. S1. Results of ROC analysis for a change point between a normal
and a gained region on Chromosome 2 of sample TCGA-23-1027, for a
bin size of h = 25kb. The TCN and DH curves for the same method
are depicted with the same line type and color with the difference that
the TCN curves use a lighter version of color for “CRMAv2” (dashed
black), “CRMAv2,TumorBoost” (dotted red), and “CRMAv2,CalMaTe”
(solid blue). The three TCN curves overlap closely making them appear as
one curve.

S5 EXAMPLE RESULTS OF CALMATE
S5.1 Allele-specific copy numbers
Figure S2(a) shows the different genotyping clouds of four
SNPs (SNP A-2010640, SNP A-2010642, SNP A-2010643 and
SNP A-2010648) in 59 HapMap samples (The International
HapMap Consortium, 2003) hybridized on the Affymetrix
GenomeWideSNP 6 chip type. These ASCN have been obtained
using CRMA v2. Each SNP is plotted in a different color. In
Figure S2(a) it can be seen that the clouds are not centered at
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their theoretical locations at (2, 0), (1, 1) and (0, 2), although
the samples are normal. Figure S2(b) shows the ASCNs after
applying CalMaTe. In this case the clouds are centered closer to
their expected location (“accuracy”) and they are clustered tighter
(“precision”) than before.

S5.2 Effect on signals summarized by dChip
In the Application Note, we applied CalMaTe to Affymetrix
GenomeWideSNP 6 data preprocessed by CRMA v2. However,
it can be also applied to other chips or preprocessing methods
such as dChip (Lin et al., 2004). Figure S3 shows the TCNs
and BAFs obtained by dChip with and without CalMaTe. These
data were obtained from NCBI-GEO GSE12702 prostate cancer
dataset (Castro et al., 2009) consisting of 20 tumors and 20 normals
hybridized to Affymetrix Mapping250K Nsp arrays. These arrays
were also included in order to show that CalMaTe can be applied
to any SNP CN microarray technologies (not only the most recent
ones). Moreover, these types of arrays are currently among the
most commonly available chiptypes on Gene Expression Omnibus
(GEO), as shownin Table S2. All 40 samples were used as a
reference to illustrate the robustness of the estimator (Section S2).
After CalMaTe, the BAFs (Fig. S3(d)) better distinguish the
expected number of genotype tracks and their positions than the
BAFs given directly by dChip (Fig. S3(c)). Similar improvements
are seen if dChip would be replaced by CRMA v2 (not shown for
this dataset).

(a) Total copy numbers - dChip

(b) Total copy numbers - dChip and CalMaTe

(c) Allele B fractions - dChip

(d) Allele B fractions - dChip and CalMaTe

Fig. S3. TCNs and BAFs along Chr. 8 of tumor sample GSM318736
with and without CalMaTe. Data are from dChip-processed Affymetrix
Mapping250K Nsp arrays. Panels (a) and (b) show the TCNs before and
after CalMaTe, respectively. Panels (c) and (d) show the corresponding
BAFs. There are three main regions, a normal at 0-20Mb with 2 copies and
BAFs near 0, 1/2 and 1 (AA, AB and BB), a deletion at 20-44Mb with 1
copy and BAFs close to 0 and 1 (A and B), and a gain at 49-145Mb with 3
copies and BAFs near 0, 1/3, 2/3, and 1 (AAA, AAB, ABB and BBB).

S5.3 Effect on Illumina signals
To show that CalMaTe also works with other microarray platforms
than Affymetrix, we also present the result of applying CalMaTe
to Illumina data. More specifically, from The Cancer Genome
Atlas (TCGA) project (TCGA, 2011) we downloaded the Illumina
Human1M-Duo data for the same ovarian tumor sample (TCGA-
23-1027) that was used in the main paper to illustrate CalMaTe
on Affymetrix GenomeWideSNP 6 (Fig. 1) as well as in the
ROC analysis. Figures S4(a) and (c) show TCNs and BAFs as
obtained by “XY method” available in Illumina’s BeadStudio
software (Illumina, 2007), whereas Figures S4(b) and (d) show
the same data calibrated by CalMaTe. As was the case for the
Affymetrix data, the BAFs after CalMaTe calibration distinguish the
different genomic segments better.

S5.4 Effect of the number of reference samples
CalMaTe uses all or a subset of the arrays as references to
compute the calibration matrix. Naturally, using a larger number

5



Ortiz-Estevez et al

(a) Before CalMaTe (b) After CalMaTe

Fig. S2. ASCNs (CA, CB) for 59 HapMap samples at four SNPs (SNP A-2010640, SNP A-2010642, SNP A-2010643 and SNP A-2010648) before (Panel
(a)) and after (Panel (b)) CalMaTe. The different SNPs are plotted in different colors. The samples were hybridized on Affymetrix GenomeWideSNP 6 arrays
and preprocessed using CRMA v2. (a) Each SNP forms tight clouds that correspond to the three possible genotypes in a normal sample. However, the location
of these clouds is different for each of the SNPs and not centered at the expected locations (2, 0), (1, 1) and (0, 2) corresponding to genotypes AA, AB and
BB. This location bias translates into noise when studying BAFs along the genome for a particular sample. (b) After CalMaTe, the ASCN estimates are more
accurate as well as more precise.

Array generation Chip type Number of samples GEO Platform(s) URL(s)
GenomeWideSNP 6 GenomeWideSNP 6 6026 GPL6801 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6801
GenomeWideSNP 5 GenomeWideSNP 5 279 GPL6804, GPL9704 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6804

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL9704
Mapping250K 16233

Mapping250K Nsp 8574 GPL3718, GPL3811 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3718
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3811

Mapping250K Sty 7659 GPL3720, GPL3812 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3720
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3812

Mapping50K 7418
Mapping50K Hind240 3467 GPL2004, GPL2014 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2004

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2014
Mapping50K Xba240 3951 GPL2005, GPL2015 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2005

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2015
Mapping10K 8604

Mapping10K Xba142 8185 GPL2641 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2641
Mapping10K Xba131 356 GPL1266 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL1266

Mapping10K Early Access 63 GPL1855, GPL3400 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL1855
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3400

Table S2. Summary of Affymetrix SNP & CN data sets on GEO as of February 27, 2012

of references improves the estimates both of the TCNs and the
BAFs. Figures S5 and S6 illustrate this fact. Figure S5 is an
“after versus before” plot that compares the estimated BAFs
of a normal sample using CRMA v2 alone against also using
CalMaTe for different number of references. Since CRMA v2
is a single-sample summarization method, the CRMA v2 BAFs
estimates are identical for any reference. These data were obtained
from NCBI-GEO GSE19539 ovarian tumor dataset (Affymetrix
GenomeWideSNP 6). The sample whose TCNs and BAFs were
estimated is GSM492495 IC022N. It can be seen that for larger
numbers of references the clouds are more tightly clustered. The
density plots of the BAF estimates using CalMaTe are included
for convenience. In Figure S6, a similar effect occurs in the TCN
estimates: the interquantile range (distance between the first and the
third quartile) decreases as the number of references increases.

S5.5 Segment calling using simulated data
We have tested CalMaTe using simulated data. These data were
generated as follows. We ran CalMaTe on 25,000 SNPs in Chr. 22
from 30 CEU HapMap samples (Affymetrix GenomeWideSNP 6).
We modified the code from CalMaTe to get the calibration
matrix and the residuals of the fit for each SNP. Multiplying
these calibration matrices by the simulated copy numbers and
adding the computed residual (from a randomly selected different
sample), we generated artificial signals for each of the alleles. The
simulated copy numbers were obtained assuming the proportion
of heterozygous SNPs to be 27%. Within the chromosome, some
regions of different lengths were assumed to have 3 copies in the
tumoral tissue. For the SNPs within these regions, the allele-specific
copy numbers of the tumor (number of copies of allele A and B) are
(0,3), (1,2) (2,1), (0,3). We assumed that the tumor purity was 25%.
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Fig. S5. Comparison of the BAF estimates with and without CalMaTe along chromosome 7 for the normal sample GSM492495 IC022N from NCBI-GEO
GSE19539 ovarian tumor dataset. The calibration with CalMaTe is performed using 3, 10 and 35 references, respectively. In addition, the density plot of the
calibrated BAF with CalMaTe is represented in red, in the Y axis. As it is shown, the BAF estimates using CalMaTe improve, as the number of references
increases. In none of the five simulations, the normal sample GSM492495 IC022N has been included in the set of references. The samples were hybridized
on Affymetrix GenomeWideSNP 6 arrays and preprocessed using CRMA v2.

For this contamination percentage, the simulated true copy numbers
are (0,2.25), (1,1.25), (1.25,1), (0,2.25). Specifically, for each SNP,
the true copy numbers in the tumor and in the normal fall in one of
the four categories shown in Table S3. The lengths of the segments

Tumor Matched Normal 25% Tumor + 75% Normal
(0,3) (0,2) (0,2.25)
(1,2) (1,1) (1,1.25)
(2,1) (1,1) (1.25,1)
(3,0) (2,0) (2.25,0)

Table S3. Correspondence between allele-specific copy numbers in a pure
tumor, a matched normal, and a tumor with 75% normal contamination.

are 2000, 1000, 500, 300, 200, 100, 60 and 30 SNPs. Each of them
are flanked by normal regions of 2000 SNPs. Non-polymorphic loci
(aka “copy-number probes”) were not included in the simulation.

As it can be seen from Figures S7 and S8, the use of CalMaTe
allows the segmentation methods (PSCN (Chen et al., 2011) and
PSCBS (Olshen et al., 2011)) to find more segments than using
CRMA v2 with or without TumorBoost. These findings are in line
with the ones of the ROC analyses, which assess the power to detect
individual change points (not segments).
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(a) Total copy numbers - Illumina,XY

(b) Total copy numbers - Illumina,XY and CalMaTe

(c) Allele B fractions - Illumina,XY

(d) Allele B fractions - Illumina,XY and CalMaTe

Fig. S4. TCNs and BAFs along Chr. 2 of TCGA ovarian cancer TCGA-23-
1027 with and without CalMaTe. Data are from Illumina-processed Illumina
Human1M-Duo arrays. Panels (a) and (b) show the TCNs before and after
CalMaTe. Panels (c) and (d) show the corresponding BAFs. In this particular
chromosome three different regions can be distinguished: a normal (i) region
(in 0-120Mb), (ii) a gain at 3 copies (in 120-140Mb), and (iii) a neutral
copy number LOH (140Mb till the end of the chromosome). The reason
for observing four tracks in the LOH region instead of two is because of
normal contamination. After applying CalMaTe, the tracks corresponding
to different ASCNs are also more tightly packed, e.g. the four tracks of the
gain are better distinguished using CalMaTe. If the BAF signals for CalMaTe
were truncated at 0 and 1 the difference would be even more apparent.
CalMaTe’s TCN estimates have less dispersion but the algorithm has also
introduced some outliers with low copy numbers.

Fig. S6. Boxplot of the TCN estimates with CalMaTe using different
number of references (same sample as in Figure S5). The TCN estimates
improve, as the number of references increases. In none of the five
studies, the normal sample GSM492495 IC022N has been included in
the set of references. The samples were hybridized on Affymetrix
GenomeWideSNP 6 arrays and preprocessed using CRMA v2.
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(a) PSCN after CRMA v2 and CalMaTe

(b) PSCN after CRMA v2

Fig. S7. Total copy numbers, Decrease of heterozygosity and major and
minor allele copy numbers using PSCN as segmentation method applied
with CRMA v2 & CalMaTe (upper) and CRMA v2 (lower). If CalMaTe is
used the PSCN segmentation algorithm detects the eight segments. In other
simulations the smallest segment (that spans 30 different probes) was missed.
Without CalMaTe, the detected segments merge zones with different copy
numbers.

(a) PSCBS after CRMA v2 and CalMaTe (without TumorBoost)

(b) PSCBS after CRMA v2 and TumorBoost

Fig. S8. Total copy numbers, Decrease of heterozygosity and major and
minor allele copy numbers using PSCBS segmentation applied using
CRMA v2 & CalMaTe (upper) and CRMA v2 & TumorBoost (lower).
PSCBS was applied using default parameters. Using CalMaTe, it identifies
six out of the eight segments. If CalMaTe is not used, only five segments are
identified.
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