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Supplementary Methods

Variational Bayes approximation

For the variational Bayes approximation we wish to estimate the distribution

�Q (Θ|W ) = argmin

Q(Θ|W )
DKL (Q (Θ|W ) ||p (Θ|W )) .

Previous authors [1, 2] have shown that this minimum is attained when

log {�qj (θj |W )} = E �Q(Θ−j |W ) [log {p (Θ,W )}] + C,

for all factorized parameters j = 1, . . . , J , where E �Q(Θ−j |W ) represents expectation taken with respect

to the estimated approximate posterior distribution removing the jth parameter, and C is a constant to

ensure
�
�qj (θj |W ) dθj = 1. Conveniently, it is possible to estimate �Q (Θ|W ) through coordinate updates

of each of these individual approximate distributions until a local minimum of the KL divergence is

reached. In addition, for any given local minimum of the KL divergence it is possible to estimate a lower

bound on the log marginal probability of the data log {p (W )},

L (W ) =

�
�Q (Θ|W ) log

�
p (Θ,W )

�Q (Θ|W )

�
dΘ.

The inequality L (W ) ≤ log {p (W )} holds because

log {p (W )} = log {p (W )}

=

�
�Q (Θ|W ) log

�
p (Θ,W )

p (Θ|W )

�
dΘ

=

�
�Q (Θ|W ) log

�
p (Θ,W ) �Q (Θ|W )

�Q (Θ|W ) p (Θ|W )

�
dΘ

= L (W ) +DKL

�
�Q (Θ|W ) ||p (Θ|W )

�

≥ L (W ) ,

since DKL

�
�Q (Θ|W ) ||p (Θ|W )

�
> 0 except when �Q (Θ|W ) = p (Θ|W ).
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Derivations of vBsr updates

The complete posterior distribution of the vBsr model is

p
�
β1, . . . , βm,y|α1, . . . , αp, σ

2
e ,X,Z

�
=

n�

i

1�
2πσ2

e

exp





− 1

2σ2
e



yi −
�

j

xijβj −
�

k

zikαk




2





×
m�

j

p
I[βj �=0]
β (1− pβ)

1−I[βj �=0] .

The log-posterior is therefore

log
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We can now derive the updates for a given �qβj (βj) approximate posterior distribution,

log
�
�qβj (βj)

�
= E

�
l �=j qβl

(βl)

�
log

�
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�
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+log (pβ) I [βj �= 0] + log (1− pβ) (1− I [βj �= 0]) + C
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2σ2
j

(βj − µj)
2
+

µ2
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2σ2
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+ log (pβ) I [βj �= 0] + log (1− pβ) (1− I [βj �= 0]) + C,

with µj =
��

i x
2
ij

�−1�
i xij

�
yi −

�
k �=j xikptkµ

t
k −

�
l zilα

t
l

�
and σ2

j =
��

i x
2
ij

�−1
σ2
e . This approximate

posterior is a mixture of a normal distribution and a point mass with normalization constant

exp {C} = (1− pβ) + pβ
�

2πσ2
j exp

�
µ2
j

2σ2
j

�
.

The approximate posterior mixing probabilities are therefore

pj =
pβ

�
2πσ2

j exp

�
µ2
j

2σ2
j

�

(1− pβ) + pβ
�

2πσ2
j exp

�
µ2
j

2σ2
j

� .

We can now specify the lower bound for the vBsr model

L
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+

�

j

pj log


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pβ

�
2πσ2
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pj


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j

(1− pj) log

�
1− pβ
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�
.

The parameter σ2
e is estimated through maximization of the lower bound,
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In addition, the parameters α = α1, . . . , αp are also estimated through maximization of the lower bound,

dL
dα

= − 1

2σ2
e

�
2ZTZα− 2ZT

�
y −XE

�
l qβl

[β]
��

0 = − 1

2σ2
e

�
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�
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�
l qβl
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��
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�
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�
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�
l qβl

[β]
�
,

where ZT
denotes the transposed matrix representation of the unpenalized variables, and X denotes the

matrix representation of the penalized variables.

vBsr updates

The updates for each regression coefficient βj for step t+ 1 of the algorithm are

�qβj (βj)
t+1

= I [βj = 0]
�
1− pt+1

j

�
+ I [βj �= 0] pt+1

j N
�
µt+1
j ,

�
σ2
j

�t+1
�
,

where

µt+1
j =

�
i xij

�
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�
k �=j xikptkµ

t
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�
l zilα

t
l

�

�
i x

2
ij

,

�
σ2
j
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�
σ2
e

�t
�

i x
2
ij

,

and

pt+1
j =

1

1 + exp

�
−G

�
�0,

�
σ2
j

�t+1
, µt+1

j

�� ,
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with
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The expectations for the βj parameters are

E�qβj
(βj)

t+1

�
βt
j

�
= �βt

j� = ptjµ
t
j ,

and

�
�
βt
j

�2� = ptj

��
µt
j

�2
+
�
σ2
j

�t�
,

where �x� denotes the expectation of the random variable x with respect to its estimated approximate

posterior distribution. Now consider the expected sum of square error term in the approximate log-

posterior (where expectations are always taken with respect to the approximate posterior distribution)

�U t� =

n�

i

E�
l �qβl

(βl)
t







yi −
�

j

xijβj −
�

k
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�

+
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�
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�
βt
�T

XTX
�
βt
�
�,

with XT
denoting the transposed matrix representation of the predictors. The most difficult term com-

putationally is the last term, which is a product of second moment matrices. Fortunately, because of the

mutual factorization among the βj parameters, we can expand this term as

�
�
βt
�T

XTX
�
βt
�
� = �

�
βt
�
�TXTX�

�
βt
�
� −

�

j

�

i

x2
ij�βt

j�2 +
�

j

�

i

x2
ij�

�
βt
j

�2�.

With this expected sufficient statistic, we can now define the update for the error variance parameter σ2
e ,

by maximizing the lower bound

�
σ2
e

�t+1
=

�U t�
n

.

Finally, the updates for the maximum approximate posterior estimates of the fixed effect parameters, α
are

αt+1
=

�
ZTZ

�−1
ZT

�
y −X�βt�

�
.

As this optimization problem is not convex, it is not guaranteed to converge to a global maximum.

In practice, we start the algorithm using starting values for all the βj sufficient statistics (µj , σj , pj)
initialized at the origin, σ2

e initialized to the variance of the observed response, and αk initialized to the

origin. We continue the algorithm until convergence is assessed (as described below). To deal with the

non-convexity, we use a number of random re-orderings of the SNPs and average the results. Details of

this are given below.
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Derivation of the zvb statistic

Consider the limit of the lower bound L when the penalty parameter pβ → 0 (�0 → −∞),

lim
pβ→0

L → −n

2
log

�
2πσ2

e

�
− 1

2σ2
e

n�

i

�
yi −

�

k
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�2
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�
β1 = 0, . . . , βm = 0, σ2

e , α
�

→ �
�
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e , α
�
,

since �U� →
�n

i (yi −
�

k zikαk)
2
,
�

j pj log

�
pβ

√
2πσ2

j

pj

�
→ 0,

�
j (1− pj) log

�
1−pβ

1−pj

�
→ 0, with the log-

likelihood function of an unpenalized linear model, �
�
β = 0, σ2

e , α
�
. In this limit of the model with no

active penalized variables, the lower bound becomes the unpenalized log-likelihood function associated

with a linear model for the unpenalized covariates. If we now consider the score and observed information

of this log-likelihood function for the jth penalized variable,

U (βj) =
d� (βj)

dβj
= − 1

2σ2
e

�
2βj

n�

i

x2
ij − 2

�

i

�
yi −

�

k

zikαk

��
,

I (βj) = −d2� (βj)

dβ2
j

=

�n
i x

2
ij

σ2
e

,

we can define a score statistic for the test of marginal association between the jth variable and the

phenotype,

S (βj = 0) =

�n
i xij (yi −

�
k zikαk)�

σ2
e

�n
i x

2
ij

.

In addition, when pβ → 0, the mean and variance updates of the approximate posterior distribution of

βj can be rewritten

µt+1
j =

�
i xij (yi −

�
l zilα

t
l)�

i x
2
ij

,

and

�
σ2
j

�t+1
=

�
σ2
e

�t
�

i x
2
ij

,

since limpβ→0 p
t+1
k → 0 for all markers for a given data-set. Since α and σ2

e are estimated through

maximization of the lower bound, in this limit they become their respective standard maximum likelihood

estimates. We now define the following statistic based on the updates of the approximate posterior

distribution,

zj =
µj�
σ2
j

. (1)

When pβ → 0 this statistic is equivalent to the score statistic from a marginal analysis of the data and

will by asymptotically N (0, 1) by standard arguments,

lim
pβ→0

zj =
(
�

i xij (yi −
�

l zilαl))�
σ2
e

�n
i x

2
ij

= S (βj = 0) .

We now consider the case when the penalty parameter pβ increases from zero. We do not claim that in this

case the asymptotic distribution of zj under the null is always N (0, 1). Yet, we do claim that if certain
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conditions concerning the data are true, there exists a value of pβ > 0 (�0 > −∞) where the distribution

of most individual statistics in the data is indistinguishable from a N (0, 1). These conditions first include
the assumption that a majority of the penalized variables are irrelevant and will therefore have individual

statistics (zj) that will be distributed under the model of no association. Second, we assume that as

pβ increases the zj distribution of the null features does not change drastically from a N (0, 1) until

the model becomes over-fit. If these assumptions are true, we can use the empirical cumulative density

function (ECDF) of the test statistic defined in Equation (1) to ensure that as more genetic markers

enter the model with larger pt+1
k parameters for increasing pβ , the asymptotic distributional assumption

of the test-statistic for the null features in the data-set is not violated. This assumes that if too many

features are included in the model (so that it is over-fit), then the distribution of this test statistic for the

majority of genetic markers will deviate drastically from a N (0, 1) distribution as the effective degrees

of freedom of the test increases. Because the ECDF converges uniformly at rate
√
n, we argue that this

procedure will be very sensitive to model over-fitting by including too many features in the model, given

the assumptions concerning the data are true.

Bayesian model averaging

The lower bound specified by minimizing the KL-divergence, which is computed every iteration through

all the parameters, is

Lt+1
= −n

2

�
log

�
2π

�
σ2
e

�t+1
�
+ 1

�
+

�

j

pt+1
j log




pβ

�
2πσ2

j

pt+1
j



+

�

j

�
1− pt+1

j

�
log

�
1− pβ
1− pt+1

j

�
.

We stop updating the distributions once |Lt+1 − Lt| < 10
−4

. In addition, after running the algorithm

with many different starting orderings, and identifying a set of multiple unique modes in the approxi-

mate posterior surface, we perform approximate Bayesian model averaging, by computing the posterior

probability for each of the models represented by a unique mode as

p (Ms) =
exp (Ls)�
s exp (Ls)

.

Based on this estimate of the posterior probability of each unique model identified, we re-weight all

parameters to produce the final vBsr estimate for each of the genotypes in the model,

�µj =

g�

s

p (Ms)µsj

�σ2
j =

g�

s

p (Ms)σ
2
sj

�pj =

g�

s

p (Ms) psj ,

where µsj , σ2
sj , psj are the respective sufficient statistics µt

j ,
�
σ2
j

�t
, ptj at convergence from the sth unique

mode identified, of g total unique modes. The Bayesian model averaged �zvb statistic for each genotype is

defined as

�zvb =
g�

s

p (Ms)



 µsj�
σ2
sj



 .
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If there is a large quantity of model uncertainty, the model variance of the �zvb test statistic under the

null model will be less than one, depending on the covariance between the estimates across modes of the

approximate posterior distribution,

Var (�zvb) =
g�

s

p (Ms)
2
+ 2

g−1�

k=1

g�

l=k+1

p (Mk) p (Ml) Cov



 µkj�
σ2
kj

,
µlj�
σ2
lj



 .

For the features with effects that are well approximated by the null distribution, their relative contribution

to the fit of the model will be very low (since �βj� ≈ 0), and therefore the correlation between their test

statistics will be high, and the variance will be close to one. For the results presented in this paper we

do not correct for the reduction in variance of the test statistic due to the Bayesian model averaging,

though in principal it can be performed by estimating the correlation between the model residuals without

the expected effect of a given feature. The approximation we use by not correcting for the reduction in

variance will slightly reduce the power of our approach, and overall make it moderately more conservative.

Choice of model complexity parameter �0

For all simulations and data analyses we solve the vBsr penalized regression model along a path of the

model complexity parameter �0. A marginal analysis is performed initially (i.e. �βk� = 0, ∀k), and the

most extreme value of the following marginal test statistic is used as the starting value of the path

−�0 = max

�
µ2
j

σj
+ log (σj)

�
.

The end point of the path is similarly chosen based on the
√
n largest value of this marginal statistic

if
√
n < m, and as the smallest value of the marginal statistic otherwise, for the simulations with

independent genotypes. For the simulations and data analysis with correlated genotypes we use a path

of �0 = (−50, . . . ,−8) and �0 = (−30, . . . ,−8) respectively, since the
√
n largest marginal statistic for

correlated genotypes was not large enough to identify the best possible models. We use a path length of 50

for simulations and data analyses. For the simulations, where we did not use any marginal pre-screening

before running our analysis, we computed the Kullback-Leibler divergence between the observed and

expected distribution of �zvb up to the 99
th

percentile as

KL =
�ω2

2
+

1

2

�
�ζ2

σ2
ref

− 1− log

�
�ζ

σ2
ref

��
,

where ω̂ = E(�zvb|abs (�zvb) < c), ζ̂ = Var (�zvb|abs (�zvb) < c), σ2
ref = 1− 2cφ(c)

Φ(c)−Φ(−c) , and c = Φ
−1

(0.995).

This statistic was used to capture the deviation of the distribution of �zvb for genetic variables that are

most likely null from its neutral expectation. While this is not the only goodness of fit measure that

could be used, based on our simulations it appeared sufficient in terms of determining when the model

starts to become over-fit. To test the flexibility of this statistic, we investigated alternative strategies

for choosing this statistic based on its behavior along the path of �0. Besides choosing just based on

the minimum (which appeared to be the most conservative strategy), we investigated the behavior of

this statistic under the null model through Monte Carlo simulations. Based on these Monte Carlo

simulations we devised a set of both conservative and liberal strategies to choose the statistic that

capture the expected behavior of KL under the null. The conservative strategies attempt to find the

value of �0 that most closely match the null expectation, and liberal strategies find �0 that match the

null expectation plus a factor related to the variability in KL. These six different strategies for choosing

which value of KL to use along the �0 path included choosing �0 with the minimum KL along the

7



path (zavb), choosing the largest �0 with log (KL) less than the expected value of E (log (KL)) (zbvb), the
largest value of �0 with log (KL) less than min (log (KL)) +

�
Var (log (KL)) (zcvb), the largest value of

�0 with log (KL) less than E (log (KL)) +

�
Var (log (KL)) (zdvb), the largest value of �0 with log (KL)

less than min (log (KL)) + 2

�
Var (log (KL)) (zevb), and the largest value of �0 with log (KL) less than

E (log (KL))+2

�
Var (log (KL)) (zfvb). The expectation and variance of log (KL) under the null model were

computed based on 1000 Monte Carlo simulations. For the data analysis, where the marginal pre-screening

was performed by only choosing genetic markers with Psma ≤ 10
−3

, we compute the KL-divergence

statistic based on the fit of the distribution between the 99.9th and 99.99th percentile of the distribution.

Therefore, in this case ω̂ = E (�zvb|abs (�zvb) < c, abs (�zvb) > b), ζ̂ = Var (�zvb|abs (�zvb) < c, abs (�zvb) > b),

σ2
ref = 1 +

cφ(c)−bφ(b)
Φ(b)−Φ(c) , b = Φ

−1
(0.9995), and c = Φ

−1
(0.99995).

Supplementary Results

We also investigated a case where the independence among markers assumption was relaxed, by using

non overlapping sub-sets of the WHI SHARe genotype data for the first 10
4
markers with minor-allele

frequency greater than 0.05 (that passed all the quality control filters) on chromosome 1. We simulated

100 replicate genetic architectures for different sample sizes and total heritabilities as in our other simu-

lations (i.e. 50 causal loci, sample sizes of either 500, 1000, or 2000, fixed heritability of 0.5 or 0.9), but

we only considered the vBsr and single-marker analysis approaches, because of the observed sensitivity

of the lasso to correlations between true and false positives. We illustrate the performance of the zvb and
the χ2

sma statistic in terms of the FWER and power in Figures S2 and S3 (for the liberal choice of model

size, zfvb). In these figures we define a positive when it has a correlation larger than R2
with the causal

locus, for different values of R2
. For both the vBsr statistic and the single-marker analysis approach we

set the significance cutoff to control the FWER to 0.05. In general we see in Figure S2 that the vBsr

approach can control the FWER much better than single-marker analysis, across a range of R2
cutoffs,

indicating it removes some spurious associations because of linkage disequilibrium. We also see in Figure

S3 that in the case of highly heritable phenotypes (i.e. h2
= 0.9), it also has greater power than the

single-marker analysis approach.

Because our primary goal is to control the type I error, we wanted to be sure that our choice of the

penalty parameter �0 was appropriate based on the empirical distribution of the test statistic. We show

the Quantile-Quantile plots of null features averaged across the 1000 replicate h2
= 0.9, n = 500 simula-

tions for three different strategies for choosing model size (zavb,z
b
vb, and zfvb) in Figure S4. We see in the

left panels of this figure, that the Q-Q plot restricted to the null genotypes corresponds very well to the

null distribution assumption of the zvb statistic for the more conservative strategies, and only starts to

deviate slightly for the more liberal strategy (top right panel of Figure S4). For illustration purposes,

we show these Q-Q plots for the single-marker analysis results averaged across the same 1000 replicated

h2
= 0.9, n = 500 simulations for the same null markers in the bottom right panel of Figure S4.
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Supplementary Figures

Figure S1: Precision-recall curves are illustrated for the 100 replicate simulations, with 10
4
independent

markers, and 50 causal loci for all three methods (using the liberal strategy for choosing model size, based

on the expectation of the diagnostic statistic plus two standard errors, zfvb). Precision is defined as
tp

tp+fp ,

and Recall is defined as
tp

tp+fn , with tp being the number of true positives, fp being the number false

positives, and fn being the number of false negatives.
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Figure S2: The family-wise error-rate (FWER) for different sample sizes, and fixed total heritabilities

are illustrated for different cut-offs of the pairwise R2
between the causal loci and tagging loci. Results

are shown averaged over 100 replicates, with 50 causal loci, with genetic effects sampled from a standard

normal distribution.
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Figure S3: The power for different sample sizes, and fixed total heritabilities are illustrated for different

cut-offs of the pairwise R2
between the causal loci and tagging loci. Results are shown averaged over 100

replicates, with 50 causal loci, with genetic effects sampled from a standard normal distribution.

11



Figure S4: The expected quantiles plotted against the average observed quantiles across 1000 replicates

for three different strategies for choosing the model size of the zvb statistic for a simulation with 10
4

independent genotypes, heritability h2
of 0.9, and sample size n = 500. The left panels shows the null

distribution of the test statistic for zvb across the null markers for the more conservative strategies, the

top right panel shows a more liberal strategy, and the bottom right panel shows the distribution of the

test statistic for χ2
sma across the null markers. In light gray are the Q-Q plots of the first 100 replicates

for each statistic.
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Figure S5: The left panel illustrates the Q-Q plot for the zvb statistic, and the right panel illustrates

the Q-Q plot for χ2
sma statistic, both truncated at Pvb < 10

−3
and Psma < 10

−3
respectively. The vBsr

analysis was run with only the genotypes that passed a marginal test Psma < 10
−3

.
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