Electronic Supporting Information for

Catalytic Reduction of Dioxygen to Water with a Monomeric Manganese Complex at Room Temperature

Ryan L. Shook,[†] Sonja M. Peterson,[†] John Greaves,[†] Curtis Moore,[‡] Arnold L. Rheingold[‡] and A.S. Borovik^{*†}

Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697-2025 and the Department of Chemistry and Biochemistry, University of California-San Diego, San Diego, 92093-0332

Email: aborovik@uci.edu

Contents

Taplest	52
Table S2	S 2
Table S3	S 3
Table S4	S 3
Table S5	S 3
Table Ső	S 4
Figure S1	S 5
Figure S2	SĞ
Figure S3	S6
Figure S4	\mathbf{S}_7

Amount of O ₂ (equiv)	Azobenzene (equiv)	DPH (equiv)
1	1.8	8.2
1	2.0	8.0
1	2.1	7.9
Average	2.0	8.0
2	4.1	5.9
2	3.9	6.1
2	3.9	6.1
Average	4.0	6.0
3	5.4	4.6
3	6.2	3.8
3	6.0	4.0
Average	5.9	4.1
4	7.8	2.2
4	8.0	2.0
4	8.4	1.6
Average	8.1	1.9
5	9.5	0.5
5	10.	0.03
5	9.8	0.2
Average	9.8	0.2

Table S1. Results from Reactions of $[Mn^{II}H_2bupa]^-$ with DPH and a Known Amount of Dioxygen.^{*a*}

^aData in this table were used to generated Table 3.

Table S2. Relative Amounts of Water and Azobenzene Produced from Reactions of [Mn^{II}H₂bupa]⁻ with DPH and Excess Dioxygen as Determined by ¹H NMR Spectroscopy.

	10		-	10	
Run	Relative Amt. DMSO	Relative Mole Ratio of H ₂ O ^b	Relative Mole Ratio of	Relative Mole Ratio of DPH	Relative Percent Yield
			Azobenzene		
$1^{\overline{a}}$	1	0.41			
1	1	3.96 (3.55)	3.82	0.12	AB: 97%
					H ₂ O: 93%
2^a	1	0.13			
2	1	10.62 (10.49)	10.97	0.18	AB: 98%
					H ₂ O: 95%
3^a	1	0.06			_)0 *
3	1	3.86 (3.80)	4.09	0.22	AB: 95%
-					H ₂ O: 93%

^arelative amount of water in DMSO-*d*₆; ^{*b*}values in parentheses are corrected for residual water in the DMSO-*d*₆ solvent and arise from integration of NMR resonances.

LACCO	s Dioxygeii as i	Juli	incu by K	annisch	ci intations.			
Run	Amount	Amt.	Theor.	Mass of	Experimental	Mass of	Amount of	Percentage
	[MnH₂bupa]	DPH	Amt. of	Sample	Determined	Background	Water	of H ₂ O
	(g)	(g)	H_2O	Used (g)	H₂O (µg /	Sample (g)	In	Produced
			(ppm)		ppm)		Backgrd.	
							(µg/ppm)	
1	0.011g	0.069	2800	0.3001	897/3000	0.2995	128 /430	93%
2	0.014	0.088	3100	0.3589	1210/ 3360	0.3700	55 / 150	105%

Table S3. Relative Amounts of Water Produced from Reactions of [Mn^{II}H₂bupa]⁻ with DPH and Excess Dioxygen as Determined by Karl Fischer Titrations.

Table S4. Relative Amounts of Water Produced from Reactions of [Mn^{II}H₂bupa]⁻ with Hydrazine and Excess Dioxygen as Determined by ¹H NMR Spectroscopy.

Run	Concentration of Toluene	Relative Amt. Toluene	Relative Mole Ratio of H ₂ O ^b	Equiv. of H ₂ O ^c	Equiv. of Hydrazine Used ^c	Relative Percent Yield of H₂O
1^{a}		1	1.21			
1	0.160 M	1	3.14 (1.94)	17	8.79	97%
2^a		1	10.86			
2	1.46 M	1	12.89 (2.03)	15.24	8.18	93%
3^a		1	6.82			
3	0.155 M	1	8.62 (1.80)	13.81	7.62	91%

^{*a*}relative amount of water in DMSO- d_6 ; ^{*b*}values in parentheses are corrected for residual water in the DMSO- d_6 solvent; ^{*c*} the amount of [Mn(H₂bupa)]- was set to one equivalent.

Salt	K[1]•0.5DMA			
Molecular formula	C ₂₇ H _{47.5} KMnN _{7.5} O _{4.5}			
Formula weight (g/mol)	643.257			
Т(К)	150(2)			
Space group	P_1^-			
a (Å)	15.687(4)			
b (Å)	20.310(5)			
c (Å)	25.983(7)			
α (deg)	95.152(4)			
β (deg)	92.776(4)			
γ (deg)	106.600(4)			
Z	8			
V (Å3)	7877(3)			
$\delta_{ m calcd}$ (Mg/m ³)	1.083			
R^{a}	0.0920			
$R_{ m w}{}^{ m b}$	0.2587			
GOF ^c	1.002			
${}^{\mathbf{a}} \mathbf{R} = [\Sigma \Delta F \Sigma F_{o}]. \ {}^{\mathbf{b}} R_{w} = \{\Sigma [\omega (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [\omega (F_{o}^{2})^{2}] \}^{1/2}.$				

Table S5. Crystallographic Data for K[1]•0.5DMA.

^c Goodness of fit on F^2 .

Complex	Protonation State	N—C bond distance (Å)
1	-	1.338(7)
[Mn ^{II} H ₂ bupa] ⁻	deprotonated	1.305(5)
[Fe ^{II} H ₂ bupa] ^{-a}	deprotonated	1.308(5)
[Mn ^{II} Hbpaa] ^{b,c}	deprotonated	1.306(2)
	protonated	1.368(2)
[Fe ^{II} Hbpaa] ^d	deprotonated	1.307(2)
	protonated	1.370(2)
H5bupa ^d	protonated	1.366(6)
H_3 bpaa ^d	protonated	1.371(2)
1	protonated	1.372(2)

Table S6. N—C bond distances of the protonated and deprotonated forms of the 2-carboxyamidopyridyl unit.

^areference 1; ^breference 2; ^c[Hbpaa]²⁻, *N*-[bis(6-pivalamido-2-pyridylmethyl)](*N*'-4-fluorophenylcarbamoylmethyl)aminato; ^dreference 3.

Figure S1. Perpendicular-mode X-band EPR spectrum (**A**) and ESI mass spectrum (**B**) after treating **1** with DPH, the corresponding spectra (**C**,**D**) of independently prepared [Mn^{II}H₂bupa]⁻, and optical spectra showing the conversion of **1** (–) to [Mn^{II}H₂bupa]⁻ and azobenzene (---). The peak at $\lambda_{max} \sim 440$ nm is from azobenzene.

Figure S2. ESI-MS spectra (expanded-scale from those in Figure 2) for recrystallized **1** (**A**) and one for the reaction of $[Mn^{II}H_2bupa]^-$ with dioxygen after ~40 min, showing the presence of both $[Mn^{III}H_3bupa(O_2)]^-$ to **1** (**B**). The small peak at m/z = 1159 was modeled as a $K\{[Mn^{III}H_3bupa(O_2)]^-\}_2$ aggregate.

Figure S3. Electronic absorbance spectra illustrating the conversion of $[Mn^{II}H_2bupa]^-$ to $[Mn^{II}H_3bupa(O_2)]^-(--)$, and $[Mn^{III}H_3bupa(O_2)]^-$ to **1** (–) measured in DMA at room temperature. Spectra for the formation of $[Mn^{III}H_3bupa(O_2)]^-$ were recorded every 10 min and those for the conversion of $[Mn^{III}H_3bupa(O_2)]^-$ to **1** were collected every 30 min (total time was 5 h). The concentration of $[Mn^{III}H_2bupa]^-$ was 2.1 mM.

Figure S4. Example of an ¹H NMR spectrum for the conversion of DPH to azobenzene with $[Mn^{II}H_2bupa]^-$ and O_2 .