Supporting Information

Selection Strategy to Generate Aptamer Pairs that Bind to Distinct Sites on Protein Targets

Qiang Gong¹, Jinpeng Wang², Kareem M. Ahmad¹, Andrew Csordas², Jiehua Zhou³, Jeff Nie^{4, 5}, Ron Stewart^{4, 5}, James A. Thomson^{4, 5}, John J. Rossi^{3, 6}, H. Tom Soh* ^{1, 2, 7}

* To whom correspondence should be addressed. Tel: 1-(805) 893-7985; Fax: 1-(805) 893-8651; Email: tsoh@engr.ucsb.edu

¹Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA 93106

²Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

³Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010

⁴Morgridge Institute for Research, Madison, WI 53707

⁵Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706

⁶Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010

⁷Department of Materials, University of California, Santa Barbara, CA 93106

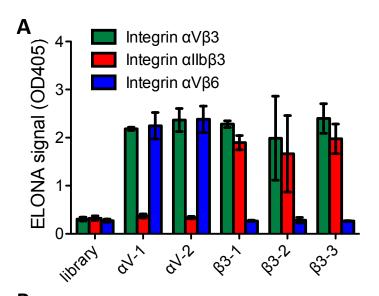
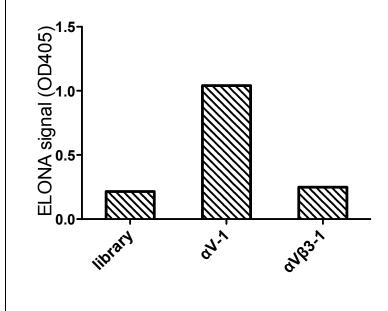

Table of Content

Table S1: Sequencing results for the αV and $\beta 3$ pools	
Figure S1: Characterization of aptamers from αV and $\beta 3$ poolsp.3	
Figure S2: Alternative MAI-SELEX specificity module scheme	


	Copy #	From αV pool
αV-1	4	CACACATTCCCGTCCTCGATACGTCTAGGCTTAGTGCCACTTGCTTAATC
αV-2	2	CACACATTCCCGTCCTCGATAAGTCTAGGCTTAGTGCCACTTACTT
αVβ3-1	15	CACACATTCCCGTCCTCGATAAGTCTAGGCTTAGTGCCACTTGCTTAATC
	1	CACACATCCCCGTCCTCGATAAGTCTAGGCTTAGTGCCACTTACTT

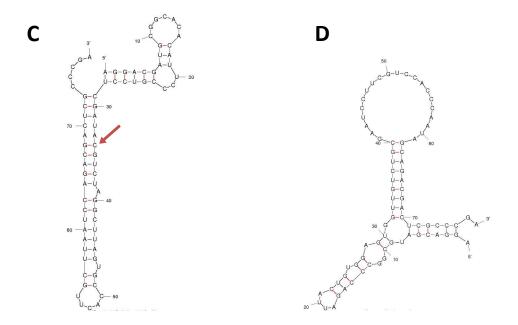

	Copy #	From β3 pool
β3-1	11	CCCAGATTACTGTGGAGTGGTTGTCTGCGAATCCTTCGTCCACCCAATAG
β3-2	1	CCCAGATTACTGTGGAGTGGTTGTCTGCGAATCCTTCGTCCACCCAATAT
β3-3	1	CCCAGATTACTGTGGAGTGGTTGTCTGCGAATCCTTCGTCCACCCTATAG
αVβ3-1	2	CACACATTCCCGTCCTCGATAAGTCTAGGCTTAGTGCCACTTGCTTAATC
	1	GCCAGATTACTGTGGAGTGGTTGTCTGCGAATCCTTGGTCCACCCAATAG
	1	GACGCTTTCACCATATAATAATGAGACCTATTCAGTGCGATTTCGTGCCG

Table S1. Sequencing results for the αV and $\beta 3$ pools. We selected six representative sequences from the αV and $\beta 3$ pools for affinity and specificity characterization. The sequences shown above are from 50N random region, which are flanked by the PCR primer sites (see Experimental Section for sequences)

Fig. S1. Characterization of aptamers from αV and $\beta 3$ pools. (A) We performed ELONA with individual aptamers to characterize their affinity for different integrin proteins. Both αV -1 and αV -2 showed only background levels of binding to integrin $\alpha IIb\beta 3$, but significant binding to integrin $\alpha V\beta 3$ and $\alpha V\beta 6$; On the other hand, all the aptamer sequences from the $\beta 3$ pool showed significant binding to integrin $\alpha V\beta 3$ and $\alpha IIb\beta 6$, but not integrin $\alpha V\beta 6$. This result indicated that, as expected from MAI-SELEX design, aptamers from the αV pool selectively bind the αV subunit while aptamers from the $\beta 3$ pools, exhibits negligible binding to integrin $\alpha V\beta 3$. We suspect that the sequence may originate from biases during synthesis or selection. (C) & (D) Model of secondary structure of αV -1 and $\beta 3$ -1 aptamers obtained using the mfold¹ software. The arrow in (C) indicates the single base difference between αV -1 and $\alpha V\beta 3$ -1, and is responsible for the dramatically different binding properties between the two aptamers. Such large differences binding properties arising from single base differences have been previously reported in literature.²

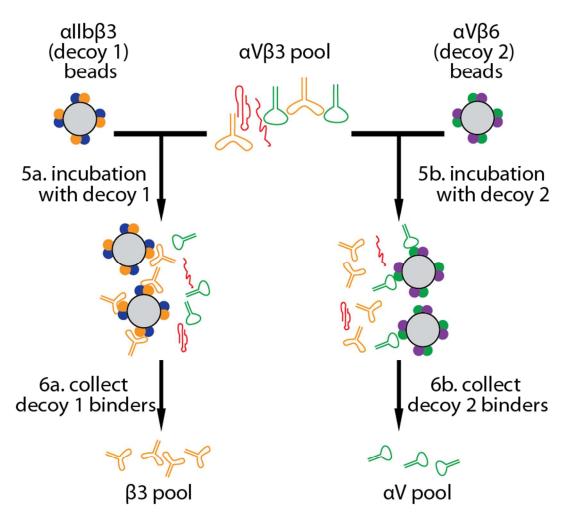


Fig. S2. Alternative MAI-SELEX specificity module scheme. Availability of two decoys would further improve the efficiency of the specificity module. For example, the $\alpha V\beta 3$ pool could be incubated with an αV -containing homolog, integrin $\alpha V\beta 6$ (step 5b), which will capture αV -binding aptamers but not $\beta 3$ -binding aptamers. Eluting the sequences that bind to integrin $\alpha V\beta 6$ will lead to enhanced isolation of the αV pool (step 6b). The $\beta 3$ pool can be isolated similarly, using integrin $\alpha IIb\beta 3$ as the decoy (step 5a, 6a).

Reference:

- (1) Zuker, M. *Nucleic Acids Res* **2003**, *31*, 3406.
- (2) Katilius, E.; Flores, C.; Woodbury, N. W. *Nucleic Acids Res* **2007**, *35*, 7626.