Supplemental Table S1. Parameters used for fitting R5a spectra measured at 25°C

	\overline{R} (×10 ⁷ s ⁻¹)	$R_{\parallel}\!/R_{\perp}^{(a)}$	C ₂₀	S ₂₀ ^b	$\Delta^{(0)}$ (G)	r.m.s.d ^c
dT ₈ -R _p	8.47±0.27	0.2	1.49±0.02	0.331±0.005	0.53±0.18	0.017
dU_8 - R_p	9.29±0.15	0.2	1.34±0.01	0.297±0.002	0.34±0.08	0.026
dT_8 - S_p	8.19±0.09	0.2	1.22±0.01	0.271±0.002	0.26±0.11	0.020
dU ₈ -S _p	8.33±0.13	0.2	1.23±0.01	0.274±0.003	0.35±0.10	0.017

^a Simulations had little sensitivity to R_{\parallel}/R_{\perp} , which was fixed to 0.2 ^b S_{20} was calculated using c_{20} values as described in Methods. ^c Root mean square deviation (*r.m.s.d*) between the measured spectrum and the corresponding simulated best-fit spectrum.

Supplemental Table S2. Label conformer distributions in simulations of d(CTACTG_{pS}C₇Y₈TTAG).d(CTAAAGCAGTAG)

Simulation		Geometry ^b	Spin	DNA		t1 (%) ^c			t2 (%) ^c		t3 ('	%) ^d
#	ANIDEN	Geometry	Label	dY ₈	g+	t	g-	g+	t	g-	+100°	-100°
1	v. 8.0	а	R5a	dT ₈	50.2	9.1	40.7	0.0	100.0	0.0	99.2	0.8
2		b			86.1	10.3	3.6	0.0	100.0	0.0	56.3	43.7
3		С			54.5	21.8	23.7	1.7	98.3	0.0	40.4	59.6
37		d			34.8	40.4	24.9	1.4	93.5	5.0	0.0	100.0
25	v.10.0	а			22.0	0.0	77.8	0.0	100.0	0.0	100.0	0.0
26		b			8.4	6.1	85.5	0.0	100.0	0.0	25.1	74.9
27		С			54.7	0.5	44.8	0.0	100.0	0.0	100.0	0.0
38		d			61.9	4.4	33.6	0.6	99.4	0.0	93.9	6.1
4	v. 8.0	а	R5a	dU ₈	20.5	17.5	62.0	0.1	96.5	3.4	92.4	7.6
5		b			26.3	41.7	32.1	0.1	99.4	0.5	15.4	84.6
6		С			1.3	3.7	95.0	0.0	90.8	9.2	100.0	0.0
28	v.10.0	а			15.1	24.2	60.7	9.1	90.8	0.1	48.4	51.6
29		b			28.0	44.4	27.5	0.1	99.9	0.1	29.3	70.7
30		С			15.1	11.8	73.1	7.9	84.4	7.7	59.7	40.3
13	v. 8.0	а	R5	dT ₈	20.5	34.4	45.0	14.9	67.7	17.4	61.2	38.8
14		b			22.1	21.0	57.0	9.6	71.6	18.8	45.6	54.4
15		С			13.0	16.1	70.9	1.9	78.9	19.3	51.5	48.5
16	v. 8.0	а	R5	dU ₈	7.9	27.2	64.9	21.2	74.7	4.1	62.8	37.2
17		b			24.3	8.1	67.6	10.6	78.8	10.7	44.0	56.0
18		С			10.5	15.2	74.2	8.2	47.4	44.4	47.2	52.8

($_{pS}C_7$ = phosphorothioate-dC; Y = T or U) labeled with R5a or R5 as an R_p diastereoisomer at $_{pS}dC_7$.

^a Molecular dynamics simulations were run on a Verari Systems computer with a Red Hat Linux 9.0 operating system using AMBER 8.0 or on a cluster with a Linux CentOS4 operating system using AMBER 10.0. All simulations used a parallelized version of AMBER running on 4 processors.

^b Starting geometries were (a) $t1=t2=t3=180^{\circ}$; (b) $t1=60^{\circ}$ (S_p) or -60° (R_p), $t2=180^{\circ}$, $t3=0^{\circ}$; (c) $t1=60^{\circ}$ (S_p) or -60° (R_p),

t2=180°, t3=120° and (d) t1=180°, t2=120°, t3=180° (for definitions of t1, t2 and t3, see Figure 1<u>A</u>).

^c g+: 0-120°; t: 120-240°; g-: 240-360°

^d Torsion angle t3 adopts values centered on +100° and -100°. Each distribution was determined based on conformations with t3 > 0° and t3 < 0°, respectively, for a torsional angle range from +180° to -180°.

Supplemental Table S3. Label conformer distributions in simulations of d(CTACTG_{pS}C₇Y₈TTAG).d(CTAAAGCAGTAG)

Simulation	AMBER	Goomotry ^b	Spin	DNA		t1 (%) ^c			t2 (%) ^c		t3 (°	%) ^d
#	а	Geometry	Label	dY ₈	g+	t	g-	g+	t	g-	+100°	-100°
7	v. 8.0	а	R5a	dT ₈	63.0	35.2	1.8	0.1	91.2	8.7	58.3	41.7
8		b			55.7	42.4	1.9	0.2	97.5	2.2	2.5	97.5
9		С			57.0	41.2	1.8	7.2	84.8	8.0	51.0	49.0
39		d			46.5	49.0	4.5	10.6	89.3	0.1	100.0	0.0
31	v.10.0	а			35.8	63.2	1.0	12.9	86.6	0.5	100.0	0.0
32		b			47.7	48.6	3.6	2.8	97.0	0.2	100.0	0.0
33		С			47.4	50.9	1.7	5.0	91.5	3.6	95.2	4.8
40		d			35.9	59.3	4.8	7.5	71.7	20.8	45.4	55.6
10	v. 8.0	а	R5a	dU ₈	42.5	54.3	3.1	20.8	79.1	0.1	41.8	58.2
11		b			46.5	49.9	3.6	2.0	90.4	7.5	8.4	91.6
12		С			52.0	40.4	7.6	1.8	87.3	10.9	49.9	50.1
34	v.10.0	а			34.0	62.4	3.6	0.0	99.7	0.2	100.0	0.0
35		b			11.6	84.0	4.4	0.6	93.6	5.8	60.5	39.5
36		С			35.5	63.2	1.2	3.9	95.7	0.4	100.0	0.0
19	v. 8.0	а	R5	dT ₈	39.9	56.2	3.8	21.1	61.8	17.2	48.7	51.3
20		b			43.0	55.4	1.5	12.0	55.5	32.5	24.6	75.4
21		С			75.1	24.3	0.6	30.5	61.9	7.6	65.5	34.5
22	v. 8.0	а	R5	dU ₈	53.1	46.0	0.9	9.5	63.9	26.6	48.7	51.3
23		b			45.0	51.9	3.1	13.3	57.3	29.4	51.4	48.6
24		С			18.3	78.5	3.2	4.0	52.8	43.2	61.8	38.2

 $(_{pS}C_7 = phosphorothioate-dC; Y = T \text{ or } U)$ labeled with R5a or R5 as an S_p diastereoisomer at $_{pS}dC_7$.

^a Molecular dynamics simulations were run on a Verari Systems computer with a Red Hat Linux 9.0 operating system using AMBER 8.0 or on a cluster with a Linux CentOS4 operating system using AMBER 10.0. All simulations used a parallelized version of AMBER running on 4 processors.

^b Starting geometries were (a) $t1=t2=t3=180^{\circ}$; (b) $t1=60^{\circ}$ (S_p) or -60° (R_p), $t2=180^{\circ}$, $t3=0^{\circ}$; (c) $t1=60^{\circ}$ (S_p) or -60° (R_p),

t2=180°, t3=120° and (d) t1=180°, t2=120°, t3=180° (for definitions of t1, t2 and t3, see Figure 1<u>A</u>).

° g+: 0-120°; t: 120-240°; g-: 240-360°

^d Torsion angle t3 adopts values centered on +100° and -100°. Each distribution was determined based on conformations with t3 > 0° and t3 < 0°, respectively, for a torsional angle range from +180° to -180°.

Supplemental Table S4. Distances from the dT_8 5-methyl carbon atom to nitroxide label functional groups in R_p -R5a- dT_8 conformers.^a

		R5a	R5a ^c	R5a ^d	R5a ^d	R5a ^d	
Conformer (t1,t2,t3)	DNA ^b	Count	Occupancy (%)	Pyrroline ring center (Å)	Closest ring methyl (Å)	Ring 4-Br (Å)	М ^е
g+,g+,-100 g+,g+,+100 g+,t,-100 g+,t,+100 g+,g-,-100 g+,g-,+100	Bı Bı Bı Bı Bı	23 57	0.006 0.014	6.1 ± 0.8 5.3 ± 0.7	4.8 ± 0.7 4.2 ± 0.8	6.4 ± 1.2 5.6 ± 0.9	
t,g+,-100 t,g+,+100 t,t,-100 t,t,+100 t,g100	Bı Bı Bı Bı	1004 5349 31	0.251 1.337 0.008	10.8 ± 0.6 10.5 ± 1.2 7.3 ± 1.7	10.9 ± 0.7 9.6 ± 1.4 5.9 ± 1.8	8.8 ± 0.9 10.0 ± 1.3 5.4 ± 1.7	
t,g-,+100 g-,g+,-100	B _I B _I	4	0.001	7.0 ± 0.7	5.5 ± 0.9	9.1 ± 0.4	
g-,t,-100 g-,t,+100 g-,g-,-100 g-,g-,+100	Bı Bı Bı Bı	33031 111681 889 10	8.258 27.920 0.222 0.003	6.3 ± 0.8 6.6 ± 0.8 9.3 ± 1.0 7.4 ± 1.2	4.1 ± 0.8 5.8 ± 0.9 9.4 ± 1.2 7.6 ± 1.0	8.9 ± 0.7 4.2 ± 0.5 7.8 ± 0.9 5.7 ± 1.5	
g+,g+,-100 g+,g+,+100 g+,t,-100 g+,t,+100 g+,g-,-100 g+,g-,+100	B B B B B	2 1 54470 131753	0.001 0.000 13.618 32.938	5.4 ± 0.9 6.3 5.1 ± 0.7 4.9 ± 0.5	3.9 ± 0.5 5.5 4.3 ± 0.6 4.1 ± 0.5	6.1 ± 3.1 3.9 5.0 ± 1.2 4.9 ± 0.9	
t,g+,-100 t,g+,+100 t,t,-100 t,t,+100	B ₁₁ B ₁₁ B ₁₁ B ₁₁	843 1 32164 6847	0.211 0.000 8.041 1.712 0.878 0.833	$10.4 \pm 0.7 \\ 8.9 \\ 7.6 \pm 1.1 \\ 7.0 \pm 1.1 \\ 6.4 \pm 0.9 \\ 7.7 \pm 2.3 \\ \end{array}$	$10.4 \pm 0.7 \\7.0 \\6.9 \pm 1.3 \\5.0 \pm 1.2 \\4.1 \pm 1.0 \\5.8 \pm 2.6$	9.2 ± 0.8 9.6 5.4 ± 1.3 8.5 ± 0.9 8.5 ± 1.5 8.5 ± 1.5	all p1
t,g-,-100 t,g-,+100	B _{II} B _{II}	1 1	0.000 0.000	6.6 5.4	4.7 3.9	8.1 6.0	₽-

g-,g+,-100 aa+.+100	B _{II} Bii	4	0.001	7.0 ± 1.5	5.5 ± 1.9	7.4 ± 1.6	
g-,t,-100	B _{II}	12588	3.147	8.1 ± 1.4	6.0 ± 1.6	9.6 ± 1.1	all
			1.326	6.5 ± 1.2	4.2 ± 1.2	8.7 ± 1.2	р1
			1.821	9.1 ± 1.3	7.1 ± 1.7	10.4 ± 1.2	p2
g-,t,+100	B _{II}	6810	1.703	7.0 ± 0.8	6.4 ± 1.0	4.4 ± 0.8	
g-,g-,-100	BII	1569	0.392	9.4 ± 0.8	9.0 ± 0.9	8.8 ± 0.8	
g-,g-,+100	B _{II}						
a+.t100	aa+	1	0.000	4.5	4.3	4.1	
3.,,,	g-,g-	5	0.001	5.8 ± 0.4	4.1 ± 0.3	6.9 ± 0.5	
a+.t.+100	t.t	9	0.002	5.0 ± 0.3	4.1 ± 0.4	5.2 ± 0.7	
3	g-,g-	11	0.003	5.1 ± 0.6	4.1 ± 0.6	5.0 ± 0.9	
t,t,-100	t,t	40	0.010	7.9 ± 0.8	6.9 ± 0.9	7.1 ± 0.9	
	g-,g-	3	0.001	9.5 ± 0.7	8.4 ± 0.5	9.2 ± 0.9	
t,t,+100	t,t	6	0.002	6.9 ± 0.3	5.8 ± 0.5	6.9 ± 1.0	
g-,t,-100	t,t	383	0.096	6.3 ± 0.5	4.0 ± 0.6	8.6 ± 0.5	
	g-,g-	56	0.014	6.8 ± 1.2	4.6 ± 1.3	9.0 ± 0.9	
g-,t,+100	t,t	228	0.057	6.5 ± 0.7	5.9 ± 1.0	3.9 ± 0.3	
	g-,g-	54	0.014	6.6 ± 0.8	6.0 ± 0.9	4.1 ± 0.5	
g-,g-,-100	t,t	65	0.016	7.8 ± 0.6	7.6 ± 0.8	7.0 ± 0.6	
	g-,g-	6	0.002	8.8 ± 0.5	8.7 ± 0.7	7.6 ± 0.7	

^a R5a adopted 37 conformers with at least one occurrence out of a possible total of 162 (3⁴ [3 positions (g+, t, g-) for t1, t2, ε , ζ] × 2 [2 positions for t3 (-100, +100)].

^b DNA backbone conformation at the $dG_{6^-pS}dC_7$ dinucleotide. All possible entries with $B_1((\epsilon, \zeta) = (t,g-))$ and $B_{11}((\epsilon, \zeta) = (g-,t))$ configurations are listed. Other entries are listed only if they have at least one occurrence, with the corresponding DNA configuration indicated by the (ϵ, ζ) pair.

^c Percentage occupancy calculated from a total of 400,000 structures (eight 10 ns simulations).

^d Average ± standard deviation of distance for each ensemble of conformers.

 ^e M = multimodal. Some conformers gave an apparent multimodal distribution for the distances. The mean distance for each of these conformers is indicate by 'all' and the component means for subpopulations (based on Gaussian fits) are shown in smaller font and are indicated by p1, p2, etc. Supplemental Table S5. Distances from the dT_8 5-methyl carbon atom to nitroxide label functional groups in R_p -R5-dT₈ conformers.^a

		B5	B5 °	B5 ^d	B5 ^d	
Conformer	DNIA b		0	Pvrroline	Closest	
(t1,t2,t3)	DNA~	Count		ring center	ring methyl	М ^е
			(%)	(Å)	(Å)	
g+,g+,-100	Bı					
g+,g+,+100	BI					
g+,t,-100	BI	51	0.034	5.9 ± 0.7	4.1 ± 0.5	
g+,t,+100	BI	27	0.018	5.8 ± 0.6	4.0 ± 0.6	
g+,g-,-100	BI	21	0.014	5.2 ± 0.3	3.9 ± 0.4	
g+,g-,+100	Bı					
t,g+,-100	B	957	0.638	10.4 ± 1.0	10.5 ± 1.1	
t,g+,+100	B	408	0.272	10.8 ± 0.8	9.5 ± 1.0	
t,t,-100	B	3926	2.617	9.6 ± 1.0	8.4 ± 1.2	
t,t,+100	B	8630	5.753	9.7 ± 1.0	8.7 ± 1.2	
t,g-,-100	B	9	0.006	11.2 ± 0.3	10.7 ± 0.4	
t,g-,+100	Bı	23	0.015	9.3 ± 0.9	9.7 ± 0.8	
aa+100	B	133	0.089	6.1 ± 0.5	4.1 ± 0.6	
gg+.+100	B	121	0.081	6.1 ± 0.3	3.9 ± 0.3	
q-,t,-100	B	24139	16.093	6.4 ± 0.9	4.2 ± 1.0	
g-,t,+100	B	14339	9.559	6.9 ± 1.6	6.1 ± 1.9	all
			4.219	5.3 ± 1.0	4.1 ± 0.9	p1
			5.340	8.1 ± 1.6	7.5 ± 2.2	p2
g-,g-,-100	Bı	4363	2.909	8.3 ± 1.3	8.1 ± 1.5	all
			0.172	5.7 ± 1.1	4.8 ± 1.5	p1
			0.746	6.8 ± 1.3	6.9 ± 1.5	p2
			1.990	8.9 ± 1.5	8.9 ± 1.7	р3
g-,g-,+100	Bı	4171	2.781	8.9 ± 1.4	7.5 ± 1.6	all
			0.490	6.6 ± 1.2	4.9 ± 1.1	p1
			2.290	9.4 ± 1.9	8.0 ± 2.6	p2
g+,g+,-100	B _{II}	39	0.026	6.4 ± 0.5	4.4 ± 1.0	
g+,g+,+100	B _{II}	791	0.527	5.3 ± 0.8	4.2 ± 0.4	
g+,t,-100	B _{II}	13750	9.167	5.3 ± 0.7	4.2 ± 0.6	
g+,t,+100	BII	13130	8.753	5.4 ± 0.7	4.0 ± 0.5	
g+,g-,-100	B _{II}					
g+,g-,+100	BII					
t a+ -100	R.	3609	2 406	100+07	102+07	
t,g+,+100	Bi	5076	3.384	10.3 ± 0.7	9.6 ± 0.8	
	. 11					

t,t,-100 t,t,+100 t,g-,-100	B _{II} B _{II} B _{II}	7326 5623 81	4.884 3.749 0.863 2.886 0.054 0.008	8.8 ± 0.8 8.4 ± 1.2 6.9 ± 1.5 8.9 ± 1.6 6.9 ± 0.6 8.8 ± 1.9	$8.4 \pm 1.1 \\ 6.7 \pm 1.5 \\ 4.6 \pm 1.4 \\ 7.1 \pm 2.0 \\ 4.8 \pm 1.0 \\ 8.5 \pm 2.9$	all p1 p2
g-,g+,-100	B _{II}	713	0.475	0.3 ± 1.5 7.4 ± 1.5	6.3 ± 1.8	
g-,g+,+100 g-,t,-100	B _{II} B _{II}	1214 7480	0.809 4.987 2.448 2.539	8.8 ± 0.7 7.7 ± 1.5 6.3 ± 1.4 8 9 ± 1.6	6.9 ± 0.9 5.7 ± 1.7 4.1 ± 1.2 7.1 ± 1.9	all p1
g-,t,+100	B _{II}	9951	6.634 0.603 6.031	8.4 ± 1.3 5.6 ± 1.4 8.7 ± 1.7	8.1 ± 1.5 4.5 ± 1.1 8.3 ± 2.3	all p1
g-,g-,-100 g-,g-,+100	B _{II} B _{II}	3695 15001	2.463 10.001	9.4 ± 0.9 9.7 ± 0.7	9.4 ± 1.0 9.1 ± 0.8	ΡĽ
g+,t,-100	t,t	1	0.001	4.1	3.7	
g+,t,+100	t,t	1	0.001	5.4	5.3	
t,g+,+100	t,t	37	0.025	7.3 ± 0.5	5.5 ± 0.6	
t,t,-100	t,t g-,g-	10 1	0.007 0.001	7.4 ± 0.9 9.7	6.3 ± 1.4 9.0	
t,t,+100	t,t g-,g-	25 1	0.017 0.001	$\begin{array}{c} 8.0 \pm 0.8 \\ 8.4 \end{array}$	6.8 ± 1.0 7.8	
t,g-,+100	t,t g-,g-	3 1	0.002 0.001	8.5 ± 0.5 9.4	8.8 ± 0.4 10.1	
g-,g+,-100	t,t g-,g-	85 1	0.057 0.001	5.7 ± 0.5 6.0	4.4 ± 0.4 3.8	
g-,g+,+100	g-,g-	1	0.001	8.1	5.9	
g-,t,-100	t,t g-,g-	330 16	0.220 0.011	6.0 ± 0.5 6.6 ± 1.2	3.9 ± 0.4 4.5 ± 1.3	
g-,t,+100	t,t g-,g-	326 26	0.217 0.017	5.4 ± 0.8 7.2 ± 1.9	4.6 ± 1.0 6.6 ± 2.3	
g-,g-,-100	t,t	137	0.091	6.9 ± 0.7	6.6 ± 0.9	

	g-,g-	4	0.003	8.2 ± 1.3	8.0 ± 1.3	
g-,g-,+100	t,t g-,g-	176 9	0.117 0.006	8.4 ± 0.8 9.1 ± 0.8	7.9 ± 1.1 8.2 ± 0.8	

^a R5 adopted 51 conformers with at least one occurrence out of a possible total of 162 (3⁴ [3 positions (g+, t, g-) for t1, t2, ε , ζ] × 2 [2 positions for t3 (-100, +100)].

^b DNA backbone conformation at the $dG_{6^-pS}dC_7$ dinucleotide. All possible entries with $B_1((\epsilon, \zeta) = (t,g-))$ and $B_{II}((\epsilon, \zeta) = (g-,t))$ configurations are listed. Other entries are listed only if they have at least one occurrence, with the corresponding DNA configuration indicated by the (ϵ, ζ) pair.

^c Percentage occupancy calculated from a total of 150,000 structures (three 10 ns simulations).

^d Average ± standard deviation of distance for each ensemble of conformers.

 ^e M = multimodal. Some conformers gave an apparent multimodal distribution for the distances. The mean distance for each of these conformers is indicate by 'all' and the component means for subpopulations (based on Gaussian fits) are shown in smaller font and are indicated by p1, p2, etc. Supplemental Table S6. B_I/B_{II} equilibria at the $dG_{6^-pS}dC_7$ dinucleotide in simulations of a DNA duplex of sequence $d(CTACTG_{pS}C_7T_8TTAG).d(CTAAAGCAGTAG)$ ($_{pS}C_7 = phosphorothioate-dC$) carrying a R5a or R5 label. Data are also shown for simulations of the unlabeled duplex $d(CTACTGC_7T_8TTAG).d(CTAAAGCAGTAG)$.

	R5a Label			R5 Label			Unlabeled	
Simulation # ^a	B _l ^b	B _{II} ^c	Simulation # ^a	Bı ^b	B _{II} ^c	Simulation #	B _l ^b	B _{II} ^c
1	37.1%	62.7%	13	34.0%	65.6%	41	27.7%	71.4%
2	2.8%	97.2%	14	36.1%	62.8%	42	28.8%	69.9%
3	16.7%	83.2%	15	52.5%	46.6%	43	49.4%	49.8%
37	23.3%	76.4%						
25	73.1%	26.7%						
26	73.3%	26.0%						
27	40.2%	59.7%						
38	37.7%	62.3%						
Mean ^d	38.0%	61.8%	Mean ^d	40.9%	58.3%	Mean ^d	35.3%	63.7%

^a Details are given in Table S2

^b B₁ at dG_{6⁻pS}dC₇ defined by $\varepsilon > 120^{\circ}$ to $\leq 220^{\circ}$ and $\zeta > 200^{\circ}$ (see Figure S2 for the basis of these ranges)

° B_{II} at dG_{6⁻pS}dC₇ defined by ε >220° and ζ >80° to ≤200° (see Figure S2 for the basis of these ranges)

^d Average over all simulations. Note that the total for $B_1 + B_{11}$ is not 100% because of minor populations of other backbone conformers (ϵ , ζ = g-, g- or t, t; see Tables S4 (R5a) and S5 (R5))

Supplemental Figure S1. Correlation between t1 and B_I/B_{II} at the $dG_{6^-pS}dC_7$ dinucleotide for simulations of R_p -R5-dT₈ and R_p -R5a-dT₈. The plots show the number of occurrences/total number of conformers for t1 and ϵ binned using intervals of 5°. Color code is from minimal (blue) to maximal (red) with 64 contour levels.

Supplemental Figure S2. Traces of the ε and ζ torsional angles for the dG₆-dC₇ dinucleotide in a 30-ns MD simulation of d(CTACTGC₇T₈TTAG).d(CTAAAGCAGTAG). Note that an initial 0.1-ns equilibration period is included in the plot to indicate that the duplex started (0 ns) in an initial B₁ conformation. The data in Table S6 are derived from the trace from 0.1 ns to 30.1 ns.