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SI Results
Behavioral Fit Justification.We used a combination of a hyperbolic
discount function (Eq. 3) combined with a logistic function (Eq.
2) to fit the behavioral data. According to the behavior (points,
Fig. 1 B–E) it was clear that changing the number of potential
targets and the number of distractors changed the probability of
choosing a target (T). Given that rewards were linked to Ts, this
can be thought of as a change in the probability of receiving
a reward for a T. The hyperbolic function we used to describe
subjective value (Eq. 3) is often thought of in regards to dealing
with delayed outcomes (1, 2); however, it is now well established
that it is appropriate for choices with probabilistic outcomes (3,
4). In fact, Green and Myerson (5) have suggested that the same
(or similar) underlying processes might account for both prob-
ability and temporal discounting. Therefore, we used this hy-
perbolic function to calculate subjective value as a function of
the number of objects. The outcome of this function is essentially
a discount value, although we were not able to explicitly test this
given the constraints of our task. To correlate the difference in
values with the choice of the monkeys, we used a logistic function
(Eq. 2). This function has been used before to go from subjective
value to choice in both monkeys (1) and human subjects (6, 7). In
our hands, these functions fit the data incredibly well.
Before finalizing which functions we would use, we tested many

alternatives. To test whether our function indeed described our
data better, we calculated AICC (corrected Akaike Information
Criterion) values for the various one-, two-, and three-parameter
functions. The difference between the smallest AICC value, which
came from the three-parameter function, and the AICC values for
the one- and two-parameter functions were very large for both
monkeys. Therefore, the likelihood of getting a better fit with
a one- or two-parameter function was essentially zero. Of the
three-parameter functions we tested, the one presented in Eq. 2
gave us the most reliable fits in both animals and allowed us to
extract three useful measures of value: the predicted probability of
fixating any object in a specific stimulus class, the subjective value
of any object in a specific stimulus class, and the preference for
objects in that stimulus class over objects in other classes.

Cross-Validation Control. There is a possibility that the strong
correlation between the calculated downstream responses and the
behavior (Fig. 4 A and B) is the result of overfitting the function
to the behavioral data. To test this possibility we ran a cross-
validation control in which the functions were fitted to the data
over 1,000 iterations. In each iteration, 75% of fixations within
a single session were used as a training set, and the remaining
fixations were used as the validation set. Specifically, once all
fixations were characterized according to the number of Ts and
the number of distractors, the fixations in each category were
randomly assigned into either the training or validation set for
each iteration. The behavioral functions were fit to the training
set, and the parameters of the fit were extracted. Then the
predicted probabilities of making a saccade to a T were calcu-
lated for the validation set. The predicted probabilities of the
validation set were then compared with the observed ones. All
iterations showed significant correlations, with a mean correla-
tion coefficient of 0.89 and SD of 0.12 (Fig. S4 A and B). On the
basis of the fit parameters of each iteration, the correlation be-
tween the calculated downstream response to a T and the
preference for that stimulus was also calculated. In this analysis,
all iterations showed significant correlations, with a mean cor-
relation coefficient of 0.86 and SD of 0.06 (Fig. S4 C and D). The

strong significant range of correlations in the cross-validation
tests confirm that the strong correlation between neural data and
the preference is not the result of overfitting particular functions
to a particular data set.
This analysis can also be used to interpret the robustness of the

behavioral fits in estimating the preference. For example, even
though the cross-validation of the behavioral fits of monkey D
produced awide range of correlations (Fig. S4A), thefit parameters
consistentlymade a series of strong correlations between calculated
downstream response and the preference (Fig. S4C). We can infer
from these results that the variance of the behavioral fit parameters
(and eventually the preference) was small enough to generate
a couple of clusters of strong correlations between the preference
and the calculated downstream response in each animal.
We can also use the output from this analysis to show that the

relationship between the calculated downstream response and
stimulus preference is better than the relationship between cal-
culated downstream response and the actual behavior. Fig. 2 E
and F show the relationship between calculated downstream
response and the observed probability of fixating any T, our
metric of the animals’ saccade goal selection. The correlation
coefficients from these two fits are both significantly less than the
mean correlation coefficients from the cross-validation analyses
comparing stimulus preference to calculated downstream re-
sponse (Fig. S4 C and D; P << 0.001, one-sample t tests).

Shuffle Correlation Analysis.There is a possibility that the source of
all or part of the correlation between stimulus preference and the
calculated downstream response might be the use of the number
of targets (NT) and the number of distractors (ND) in calculating
both stimulus preference and calculated downstream response.
To investigate this possibility we ran a series of shuffle correlation
analyses to see how much of the correlation is contributed by an
actual relationship and how much of it is due to the common
factors. In this analysis we calculated the preference to potential
targets, fixated Ts and Ds for each fixation separately using the fit
variables obtained in the original analysis (shown in the bottom
two rows of Table S1). As in that analysis, we determined the
mean numbers of objects to be used in the calculated downstream
response formula using all the fixations within a session that had
the same preference. However, before plotting the data, we
shuffled the neural activity and randomly assigned the responses
to a class and then calculated the calculated downstream re-
sponses and the correlation between calculated downstream re-
sponses and preferences. In this manner the neural activity is
randomly assigned to preferences. We repeated this process 1,000
times. Distributions of the correlation coefficients between the
calculated downstream response, using the shuffled neural data,
and stimulus preference are shown in Fig. S5 A–F for each cat-
egory of stimulus and monkey separately. The original correlation
coefficients (Fig. 5 C–H) are shown by the inverted triangles and
do not lie within the shuffled distributions (Fig. S5; P << 0.001,
one-sample t tests). In each panel, the result of the best correla-
tion from the shuffled data is plotted in the Inset. A comparison of
these Insets with the scatter plots shown in Fig. 5 C–H emphasizes
that the shuffled correlations were primarily driven by a single
region of the graph (usually the left side, with low preference),
whereas the actual data are correlated across all preferences.
These data suggest that some of the correlation we see between
the calculated downstream response and stimulus preference may
be due to common factors, but they cannot explain the much
higher correlations found in the actual data.
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SI Methods
All experiments were approved by the Chancellor’s Animal
Research Committee at University of California, Los Angeles as
complying with the guidelines established in the Public Health
Service Guide for the Care and Use of Laboratory Animals.

Surgical Preparation. Two rhesus monkeys (9–12 kg) were im-
planted with head posts, scleral coils, and recording cylinders
during sterile surgery under general anesthesia (8); animals were
initially anesthetized with ketamine and xylazine and maintained
with isofluorane.

Electrophysiological Recording. Both animals were trained on the
standard memory-guided saccade (MGS) and the foraging search
tasks. We recorded extracellular single-unit activity from the
lateral intraparietal area (LIP) using tungsten microelectrodes
guided by coordinates fromMRI images. Recorded neurons were
considered to be in LIP if they showed the typical pattern of LIP
activity, consisting of a visual burst, delayed sustained activity,
and/or a peri-saccadic burst, during the MGS task (9). The size
and position of the receptive field of each neuron was estimated
using an automated MGS task covering 9 or 25 points (see ref. 10
for details). Neurons that did not allow us to have only a single
stimulus in the receptive field were rejected.
To begin a trial of the foraging task (Fig. 1A), the monkeys had

to fixate on a spot placed to one side of the screen. After a delay of
450–700 ms, an array of potential targets (T) and distractors (+)
was presented, with one over the fixation spot. One of the targets
had a juice reward associated with it, such that if the monkey
looked at it for 500 ms within 8 s after the start of the trial, he
would get the reward. As in previous free-viewing visual search
studies (8, 11, 12), the stimuli were arranged in such a fashion that
when the monkey looked at one stimulus, the receptive field of an
LIP neuron encompassed another stimulus. The number of targets
and distractors varied in each trial. Although the total number of
objects was always equal to or less than 10, the number of po-
tential targets ranged from one to seven, and the number of dis-
tractors ranged from zero to seven during behavioral data
collection. Only two sets of trials were used during the neural
recording sessions. Either the number of potential targets was
always three, and the number of objects varied among three, five,
or seven, or the total number of objects was always 10, and the
number of potential targets varied among three, five or seven.

Data Analysis.Data were recorded from 95 LIP neurons (53 from
monkey E and 42 from monkey D). We analyzed neural activity
during fixations in which there was a single object inside the
receptive field. Data were aligned by the beginning of fixation, and
we analyzed the mean spike rates within a 350-ms window starting
150 ms after the end of the last saccade (i.e., the beginning of
fixation). We roughly discriminated action potentials online and
then accurately sorted spikes offline using SortClient software
(Plexon Inc.). The experiments were run using the REX system
(13), and data were recorded using the Plexon system (Plexon
Inc.). Data were analyzed using custom code written in MAT-
LAB (Mathworks).
Exponential choice functions (Eqs. 2 and 5) were fit to the

behavioral data using a weighted nonlinear regression technique.
For the fitting of the behavioral data, the observed probabilities
were calculated by pooling all fixations across all sessions, in
which the same number of object classes were present (e.g., three
potential targets, two fixated Ts, and five distractors), and cal-
culating the probability of making a saccade to any stimulus in
each of the three classes. For the initial analysis, calculated
downstream responses were calculated according to the number
of Ts, distractors, and the average neural responses to Ts and
distractors in that condition. These responses were plotted
against the behavior or the estimates of value (saccade proba-
bility, stimulus preference, and subjective value) calculated from
those conditions using the fit variables obtained in the original fit
(Table S1).
For the analyses in which we included three classes of stimuli,

the observed probabilities were used to fit the behavioral data
(Eq. 5) and to give values to our four fit variables (β, KT, kfT, and
KD; Table S1). Because of the limited number of trials in any
given condition in a single session, the data plotted in Fig. 5
came from averaging across trials with different numbers of
objects, but similar preferences, within a session. This was ac-
complished by using the three relevant fit variables to calculate
an estimate of preference for each fixation. Within each session,
there were a limited number of unique preferences, so all trials
with these unique preferences were pooled and the mean num-
ber of potential targets, fixated Ts, and distractors calculated
from these trials. These mean numbers of stimuli were used with
the actual mean responses for each class of stimulus to calculate
the calculated downstream response for this set of data within
a single session.
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Fig. S1. Relationship between the calculated downstream response to a T and the probability of fixating any T for monkeys D and E when all neural data were
used (A and B) and when only neural data from fixations made before the monkey made a saccade away from the receptive field were used (C and D). The
exclusion of fixations followed by a saccade into the receptive field did not have a significant impact on the relationship between the calculated downstream
response and the behavior for either monkey.
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Fig. S2. Relationship between LIP activity and our estimates of value for monkey D. Each point in each panel represents the response of one neuron in one
condition, whereby a condition is defined by the number of potential targets and number of distractors present in the array. All estimates of value were
obtained using the fit shown in Fig. 3A and with the parameters listed in the first row of Table S1. Raw responses (Top), normalized responses (Middle), and
calculated downstream responses (Bottom) to potential targets (T) are plotted against the probability of fixating any T (A, D, and G), the subjective value of any
T (B, E, and H), and the preference for any T (C, F, and I). Black lines represent the least square regression lines. Normalized responses were calculated by
dividing the response in one condition by the mean response for that neuron under all six conditions.
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Fig. S3. Relationship between LIP activity and our estimates of value for monkey E. Each point in each panel represents the response of one neuron in one
condition, whereby a condition is defined by the number of potential targets and number of distractors present in the array. All estimates of value were
obtained using the fit shown in Fig. 3B and with the parameters listed in the second row of Table S1. Raw responses (Top), normalized responses (Middle), and
calculated downstream responses (Bottom) to potential targets (T) are plotted against the probability of fixating any T (A, D, and G), the subjective value of any
T (B, E, and H), and the preference for any T (C, F, and I). Black lines represent the least square regression lines. Normalized responses were calculated by
dividing the response in one condition by the mean response for that neuron under all six conditions.
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Fig. S4. Cross-validation of the behavioral and neural fits. (A and B) Distributions of the correlation coefficients between the predicted and observed
probabilities of fixating a T for 1,000 iterations of cross-validation in monkeys D and E, respectively. Red triangles represent the value of the correlation
coefficients of the behavioral fit in the actual data (from Fig. 3 A and B). (C and D) Distributions of the correlation coefficients between the calculated
downstream responses to a T and behaviorally defined preference to a T for 1,000 iterations of cross-validation in monkeys D and E, respectively. Red triangles
represent the value of the correlation coefficients of the neural fit in the actual data (from Fig. 4 A and B).
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Fig. S5. Shuffle correlation analysis. Distribution of the correlation coefficients between calculated downstream response (CDR) and the stimulus preferences
using 1,000 iterations of shuffled average neural responses to potential targets (A and B), fixated Ts (C and D), and distractors (E and F) plotted separately
for monkeys D and E. Insets: Best examples from each distribution are plotted. Red triangles represent the correlation coefficients from the actual data (from
Fig. 5 C–H).
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Fig. S6. Relationship between the calculated downstream response to a T and the preference for any T for monkeys D and E when all neural data were used
(A and B) and when only neural data from fixations made before the monkey made a saccade away from the receptive field were used (C and D). The exclusion
of fixations followed by a saccade into the receptive field did not have a significant impact on the relationship between the calculated downstream response to
a T and the preference for a T for either monkey.

Table S1. Parameters for the three-variable fit (3-var) shown in
Figs. 1, 3, 4, S2, S3, S4, and S6 and the four-variable fit (4-var)
shown in Figs. 5 and S5

Fit Monkey β KT KD KfT

3-var D 5.1557 0.8284 0.1445 —

E 5.7819 3.3107 0.7189 —

4-var D 3.5848 0.2884 0.1133 0.5495
E 3.0532 0.4797 1.0255 1.5877
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