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1 How the combination of population structure and repetition can help the 

evolution of cooperation. 

We begin with a simple illustration of how the two ingredients of the model together 

can allow cooperation to evolve. Therefore we consider a population structure where the 

population is divided into groups of equal size. If this division is made in an assortative 

way, then this implies that players that play strategy A face other players that play 

strategy A with a probability that is larger than the probability that random group 

formation would give. Figure S1 below depicts the extreme case, where assortment is 

complete.  

 

 

 

 

Fig. S1. A population divided in groups with complete assortment. 

Obviously, with complete assortment the probability of a cooperator interacting with a 

cooperator is 1, while the probability of a defector meeting a cooperator is 0.  

Complete assortment implies that already in a regular, unrepeated prisoners dilemma 

cooperation is always selected for, because cooperators playing against cooperators earn 

more than defectors playing against defectors. 

A bit less extreme is the case in Figure S2 below, where the population frequency of 

cooperators is    , but the probability of a cooperator interacting with a cooperator is 
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     , while the probability of a defector meeting a cooperator is      . 

(Consequently, the probability of a defector interacting with a defector is      , and 

the probability of a cooperator meeting a defector is      ). 

 

 

 

 

Fig. S2. A population divided in groups with less than complete assortment. 

In a regular, unrepeated prisoners dilemma with    ,    ,     and     this 

implies that the expected payoff for a cooperator is (     )    (     )    

    , while the expected payoff for a defector is (     )    (     )        . 

Cooperative behaviour is therefore not selected with this population structure and 

without repetition. 

If we replace the unrepeated, one shot prisoners’ dilemma with the repeated version 

with a continuation probability   and if we replace the strategy Cooperate by Tit-for-Tat 

(TFT) and Defect by Always Defect (All D), then the payoffs change. For the repeated 

game, we compute normalised discounted payoffs as (   )∑    
     , where    is the 

payoff in round i and the term (   ) normalises the discounted sum of the payoffs. 

With       the payoff matrix changes from the first to the second payoff matrix 

below. 
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Cooperate Defect 

Cooperate 2 0 

Defect 3 1 

 

 

TFT All D 

TFT 2 0.5 

All D 2 1 

 

With repetition, reciprocity therefore will reduce how much a cooperator loses when it 

meets a defector and how much a defector gains from meeting a cooperator. This allows 

cooperation to win where it could not win before; with the population structure we just 

had, the expected payoff for Tit-for-Tat is (     )    (     )           while 

the expected payoff for a defector is (     )    (     )        . From the 

second payoff matrix it is clear that cooperation would also not be selected with 

repetition only and no population structure. Therefore this example illustrates that the 

combination of population structure and repetition can work in cases where none of the 

two would lead to the evolution of cooperation on its own.  

For a population structure that is subdivided into groups, assortment can be measured as 

 (   )   (   ) (see 1–5). This measure is the probability that a player with strategy 

T interacts with another player that also plays strategy T minus the probability that a 

player with a strategy other than strategy T interacts with a player that plays strategy T. 

This equals the probability with which a rare mutant meets a copy of itself, because 

 (   )    if T is rare, and it can be interpreted as relatedness. 

This is only an illustration that considers a few strategies and suggest why population 

structure and repetition (which allows for reciprocity to evolve) might reinforce each 

other. Below we will consider a setting that allows for all possible strategies, and where 

population structure and repetition are both parametrized by continuous parameters. For 

this very general setting it turns out that one can in fact make predictions, but we have 

to account for the complexities that come with the generality of the strategy set.  
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Other population structures that deviate from random matching are for instance models 

with local interaction or graph structured populations. Given some very mild conditions 

one can also characterize the population structure in, amongst others, graph structured 

populations, with a single measure  , which together with the payoff matrix suffices to 

determine the direction of selection (6).  Also here, the reason why the combination of 

population structure and repetition can work is that with repetition cooperators that 

interact with defectors will transfer less payoff to them, if the cooperators are reciprocal.  

We are not the first to point to the importance of the interaction between assortment and 

repetition. The seminal paper of Axelrod and Hamilton (7) discussed both elements: 

their stability analysis considered repeated games in well-mixed populations, while the 

role of assortment was pointed out verbally. In the current paper, we present a 

theoretical analysis of both aspects, describing exactly how the two ingredients interact 

and demonstrating the need for both in order to explain human conditional cooperation. 

More recent examples of papers with models that combine conditional strategies and 

(moderate levels of) assortment are (5) and (8–10), which are discussed in more depth 

in section 5 of the SI.  

Another interesting way to look at these two ingredients is that on top of the assortment 

that is induced by the population structure, reciprocity can also be seen as generating 

assortment. This assortment is then not one in strategies, but in cooperative actions, and 

is created, not instantaneously, but with a (small) delay. By matching the previous move 

of its opponent, Tit-for-Tat for instance increases assortment in cooperative behaviours 

in any population. Both ingredients can therefore be seen as different sources of 

assortment (11). We should stress, however, that the analysis below shows that it is also 

very much worth treating them as separate ingredients, and not as interchangeable 

sources of assortment. The picture that the equilibrium analysis paints for the case in 

which there is only assortment in the more standard sense is very different from what it 
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finds for the case in which there is only repetition. While the analysis predicts only one 

equilibrium level of cooperation for the case of assortment without repetition, it predicts 

a multiplicity of equilibrium levels of cooperation in the case of repetition without 

(spatial) assortment, with movement between them. The finding that repetition and 

reciprocity can actually also harm cooperation – which is the case in a part of the 

parameter space where assortment is high – also shows that there is not a 

straightforward way to substitute one for the other and get similar results, even when 

only considering the  average level of cooperation.  
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2 The simulations 

The population consists of an even number of individuals, which are matched in pairs. 

Each individual is endowed with a finite state automaton, which codes for a strategy for 

the repeated game. Not all possible strategies in the repeated prisoners dilemma are 

finite state automata, but one can show that in a very natural sense, all strategies can be 

approximated arbitrarily closely by a finite state automaton (12). Using finite state 

automata therefore is only a very mild restriction on the strategy space.  

The two individuals in every pair play the repeated game with each other, where the 

number of repetitions is a random variable; the first round is played for sure, and then 

every next repetition occurs with probability  . This implies that the number of rounds 

follows a geometric distribution, where the probability that the game lasts at least   

rounds is     , and the probability that it lasts exactly   rounds is     (   ). The 

payoffs gathered by an individual in the different rounds are added up to give its total 

payoff. This follows the standard interpretation of   as a continuation probability in 

repeated games. 

The total payoffs they gather from their interaction are used in the update step in which 

the next generation is drawn. Every pair in the next generation is drawn following the 

same procedure. First the first individual in that pair is drawn, where each individual in 

the parent population has a probability proportional to payoff to be the parent (the 

probability that individual   in the parent population is drawn as a parent is its payoff 

divided by the sum of the payoffs of all individuals in the parent population). For the 

second individual, a nested procedure applies. With probability   the parent of the first 

individual is chosen to also become the parent of the second individual. With 

probability     the second individual is drawn in the same way as the first one, which 

means that each individual in the parent population has a probability proportional to 
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payoff to become the parent. The parent of the first individual is not excluded there, so 

in that sense one could say that it is with replacement.  

Two things are worth noting here. The first is that with     we are back in the 

random matching procedure. The second is that the expected number of offspring of 

every member of the parent population is not affected by the value of   in this 

procedure; for every   the expected number of offspring of an individual in the parent 

population is its own payoff divided by the average payoff in the parent population. 

Then every individual has a probability with which it mutates. The mutation procedure 

is the same as in (12); if an individual gets to mutate, then either a state is added, 

deleted, the action that is played when in a state is changed, or which state to go to, 

depending on the action of the other, is changed. If a state is added, one arrow is 

randomly selected to point to this state. If a state is deleted, then all arrows pointing 

towards that state are one by one randomly reassigned to another state, where each state 

is equally likely to be chosen. 

This ensures that every finite state automaton can be reached from every other finite 

state automaton in a finite number of mutation steps. The mutation step completes the 

cycle, which is then repeated a large number of times.  

One advantage of the matching procedure is that it allows us to vary the population 

structure continuously, in a way that is consistent with the classical setting in (1), where 

the parameter   has the same role as   here. Note that for an alternative wide set of 

population structures and update rules, one could compute a characteristic sigma (6) for 

each combination of a population structure and update rule, which could also play a role 

similar to the assortment parameter, but to inverse engineer population structures that 

give a continuum of such sigma’s is much harder. What we did here is basically form 
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groups of size 2 – where the examples in Figures S1 and S2 have groups of size 11 – in 

a way that can be done for every   between 0 and 1, and that is consistent with (1–5). 

The simulation program, including more detailed explanation, can be found on 

www.evolutionandgames.com and the code is available on request. 

 

 
 

 

 

 

Fig. S3. The life cycle in the simulations. 
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In Figures 1 and 3 of the main text we represent automata by their smallest equivalent. 

All strategies for which the output in every state is D, for instance, are reduced to the 

simplest All D: a single state automaton with output D. That also implies that in Figure 

3 of the main text we lump every implementation of All D together. There is good 

reason to do that – they are all the same strategy – but it should be noted that mutation 

probabilities to other strategies of course depend on the actual implementation.  

Note that the results will naturally be sensitive to the choice of the mutation procedure. 

If we change to a strange mutation procedure that never adds a state with output C and 

never changes the output in a state to a C, then cooperation will obviously never evolve 

from All D. Also the requirement that it should be possible to go from one automaton to 

any other automaton by a sequence of mutation steps with positive probability does not 

guarantee anything, as one can always make some mutations extremely unlikely 

compared to others. What we do have is that mutations are not biased against D or C, so 

without selection pressure, automata evolve that on average cooperate half the time. But 

even that does not imply we should get a picture like Figure 2 in the main text; if adding 

a state is sufficiently less likely than deleting one, Figure 2 will consist of a black block 

everywhere below       and a yellow block everywhere above. General statements 

about the robustness to all changes in mutation probabilities therefore are hard to 

construct. It seems, however, that simulation results are relatively robust to changes in 

the probabilities of adding, deleting and changing states and arrows, as long as they 

remain of the same order of magnitude.         
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3 Simulation results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. The strategies from Fig. 1 in the main text. 
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3.1 Description of the strategies in Figure 1 in the main text;       ,    . 

The population spends a lot of time in All D (A) or similar, fully uncooperative equilibria (C, L), 

but also visits more cooperative equilibria. Some of those are classic strategies, like TFT (G) or 

Grim Trigger (M), but more often strategies will be combinations of different components. 

They vary in their reciprocity, their use of codes before they start cooperating, their ability to 

exploit naïve cooperators, and their level of cooperation if it is established.  

All equilibria in which there is cooperation must be reciprocal, but while some strategies are 

completely unforgiving (I, K, M), others punish defections with a minimum of 1 (G, N), 2 (B, 

F) or 3 (H, J) defections, where in some of those a return to cooperation does (B, G, H, N) and 

in others does not (F, J) require its opponent to “apologize” by playing cooperate at the right 

time. More complex forms of reciprocity, with different cooperative states, are the strategies at 

E and O.  

Some strategies use a code before starting to cooperate, where the codes we see in this part of 

the run are to defect once (B, E, F, I, J, O), or to play a sequence of one cooperation and three 

defections (K). If the opponent does not provide this code, then in some cases cooperation is 

started anyway (I, J), while in other cases the strategy defects until the right code is provided 

after all (B, F, O), or never gives it another chance and simply defects forever (K). These 

strategies thereby also differ in how well they exploit some more naïve cooperators. The 

strategy at E has alternative codes leading to different cooperative states.  

The level of cooperation that is achieved – once past the initial code, if there is one – can also 

differ; in these examples they then cooperate every period (B, E-K, M) or every other period (N, 

P) when playing against themselves. 

The population at D is a mix of two strategies, where each strategy performs poorly against 

itself, but both trigger cooperation in each other. They thereby do well against each other. While 

the “less nice” one of the two (in this case the second one) gets the better end of the deal, it is 
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nonetheless prevented from outperforming the other overall by its bad performance against 

itself.  

 

3.2 Levels of cooperation for     and varying continuation probability 

 

 

Fig. S5. Levels of cooperation for different b/c ratios and continuation probabilities 

Every data point is the average level of cooperation during four runs of 500 000 generations 

each. The game is a repeated prisoners’ dilemma with varying b/c-ratios. The red line is for the 

stage game where a co-operator gets a payoff of 2 when it interacts with another co-operator, 0 

if it interacts with a defector, and where a defector gets a payoff of 3, when it interacts with a 

co-operator, and a payoff of 1 if it interacts with another defector. This gives a b/c-ratio of 2. 

The green and the blue line are for stage games with b/c equal to 3 and 1.5, respectively. 

Continuation probability is varied in steps of 0.01 (and only goes up to .99, because 1.0 would 

imply that games would never actually end). Even for δ = 0.99 defection was still quite 

common.  
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4 Theoretical analysis 

4.1 Description of the regions  

All figures are drawn for  
 

 
  .

Region 1 

  

Region 1 is the area below the line 

  
    

    
. The region is split in two by 

the line   
   (   )

   (   )
.  

In this region, All D is the most 

prominent equilibrium. It is not the only 

one, but what all other equilibria in this 

region share with All D, is that they 

always play D when playing against 

themselves. All D can also directly 

invade any other strategy which does 

cooperate when it plays against itself, 

even if only a little. Therefore, in this 

region, there is no equilibrium that is 

even somewhat cooperative.

If   is below the threshold depicted by the dashed line, then all equilibria are even 

robust against indirect invasions (RAII). An indirect invasion occurs when a neutral 

mutant opens the door for another mutant, where the second mutant only has a selective 

advantage after the neutral mutant has gained a certain share in the population, but not 

before.  

Above this threshold indirect invasions into All D and other equilibria are possible, but 

because within region 1 there are no equilibria that are even somewhat cooperative, the 

population cannot settle on a (somewhat) cooperative equilibrium after the indirect 

invasion. Moreover, whatever gets established with the indirect invasion can in turn be 

invaded directly by All D. We therefore expect the population to quickly revert to a fully 

0.0 0.5 1.0
0.0

0.5

1.0
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uncooperative equilibrium after any indirect invasion in the part of region 1 in which 

indirect invasions are possible.  

 

Region 2 

  

Region 2 is the area above the line 

  
    

    
, and below   

    

        
.  

Region 2 is similar to region 1 in the 

sense that all cooperative strategies can 

directly be invaded. Apart from being 

similar, it is also different from region 

1, in the sense that it is not All D that 

can directly invade cooperative 

strategies here. It can be invaded 

directly, but by a strategy that is not 

fully defecting when it plays against 

itself. This invader, in turn, is also

vulnerable to direct invasion by less cooperative strategies. These mutations however 

are relatively unlikely to appear in our simulations, because it takes a bit of tinkering to 

construct them (see Theorem 3). The population can therefore be stuck for a while in 

such a cooperative disequilibrium state. It turns out that such states are regularly left 

through indirect invasion after all (first a neutral mutant, then one with an actual 

advantage) which suggests that even though  the possibility of a direct invasion is there, 

it may be relatively hard to find. Arriving at these (somewhat) cooperative strategies 

also happens by indirect invasions. The fact that both getting there and away regularly 

happens by indirect invasions, in spite of the presence of a (hard to find) direct way out, 

makes the dynamics in region 2 a bit more like region 3 – where indirect invasions in 

and out of equilibrium are all that is there – than like region 1 – where all there is, is 

neutral movement between fully defecting states (see Figure 3 in the main text). 

  

0.0 0.5 1.0
0.0

0.5

1.0
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Region 3 

   

Region 3 is the area above the line 

  
    

        
, and below   

    

    
.  

In this region there is a host of 

equilibria, ranging from fully defecting 

(for instance All D) to fully cooperative 

(for instance TFT or Grim Trigger). The 

population moves between these 

equilibria by means of indirect 

invasions.  

 

Region 4 

 

Region 4 is the area above the line 

  
    

    
 and below   

 (   )  

 
. The 

dotted line is   
 

   (   )
.  

In region 4 there are also multiple 

equilibria. The difference between 

region 3 and region 4 is that in the latter 

none of them are fully defecting. In 

other words: all equilibria now are at 

least somewhat cooperative. Indirect 

invasions by fully defecting strategies 

are possible, and do occur, but then 

result in relatively short-lived stays in a 

defecting disequilibrium state.  

 

Going from region 3 to region 4 is an important shift, because in region 4 full defection 

no longer is an equilibrium. The reason why the crossing of the border between those 

regions is especially interesting for humans is that the amount of population structure 

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
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needed to reach the threshold is decreasing as the continuation probability increases. 

With continuation probabilities close to 1, even a very small positive   is enough to 

move into region 4 and lose the fully defecting equilibria. 

 A remarkable thing is that while repetition helps cooperation in the lower half of region 

4, it actually harms cooperation in the upper half. The reason is that reciprocity can also 

safeguard a moderate level of defection from direct invasions of a higher level of 

cooperation. In the results section we will also see how not only in the lower half, but 

also in the upper half, close to region 5, indirect invasions with decreasing levels of 

cooperation are possible. 

Above the dotted line, All C and all other strategies that always play C against 

themselves are RAII. 

 

Region 5 

 

Region 5 is the area above the line 

  
 (   )  

 
. 

In Region 5, All C is the most 

prominent equilibrium. It is not the only 

one, but what all other equilibria in this 

region share with All C is that they 

always play C in equilibrium. In fact, 

any strategy that always plays C against 

itself is an equilibrium in region 5, and 

moreover even RAII.  All C itself can 

also directly invade any other strategy 

which plays defect against itself, even if 

it does so only once.  

Therefore, in this region, there is no equilibrium that falls short of full cooperation.  

0.0 0.5 1.0
0.0

0.5

1.0
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Fig. S6. All regions together in one figure. 

 

4.2 Definitions 

The characteristics of and boundaries between these regions are given by the results 

presented below. The results are general in the sense that they look at equilibrium 

strategies in the unrestricted strategy space of the repeated game (see 12 for the case 

without population structure). We will apply a few well known concepts; an 

equilibrium, an evolutionarily stable strategy (ESS) and a neutrally stable strategy 

(NSS), which is also known as weak ESS. We also use the concept of a strategy that is 

robust against indirect invasions (RAII).  In this setting their definitions all have to be 

extended – or applied in an unusually broad sense – in order to encompass population 

structure. With random matching (   ) they revert to their normal definitions.  

Definition 1:  A strategy S – or a strategy profile (   ) – is a (symmetric) equilibrium if 

for every strategy    the following holds: 

  (     )  (   ) (    )   (   ) 

 

Without structure – that is, with     – this is the definition of a symmetric Nash 

equilibrium (13, 14 see also 15). 

0.0 0.5 1.0
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Definition 2: A strategy S is an evolutionarily stable strategy if for every strategy 

     the following holds: 

1)   (     )  (   ) (    )   (   ) 

2) If 1) holds with equality, then  

   (     )   (    )   (    )   (   ) 

Without structure – that is, with     – this is the standard definition of an 

evolutionarily stable strategy (16, see also 15) because the equality in condition 1) for 

    implies that condition 2) simplifies to  (     )   (    ). In order to see why 

also for     this should be the condition, let    be a mixture of a     share of 

incumbents   and an   share of mutants   . With assortment  , the probability with 

which an individual playing   is facing copy of itself, if it finds itself in population   , 

is   (   )(   ), while the probability with which    is facing copy of itself is 

  (   ) . The payoffs of both strategies against the whole population is therefore:  

 (    )    (   )  (   ){  (    )  (   ) (   )} 

  (   )   (   ){ (    )   (   )} 

 (     )    (     )  (   ){  (     )  (   ) (    )} 

   (     )  (   ) (    ) 

                                      (   ){ (     )   (    )} 

It is clear that there is an  ̅  (   ) such that  (    )   (     ) for all    (   )̅ if 

and only if conditions 1) and 2) apply. The more general definitions in (1) and (17) can 

therefore encompass this simple population structure already (see 18). 
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Definition 3: A strategy S is a neutrally stable strategy if for every strategy      the 

following holds: 

1)   (     )  (   ) (    )   (   ) 

2) If 1) holds with equality, then  

 (     )   (    )   (    )   (   ) 

Without structure – that is, with     – this is the standard definition of a neutrally 

stable strategy (19, see also 15). A neutrally stable strategy is sometimes also referred to 

as a weakly evolutionarily stable strategy 

 

 

If S is not a neutrally stable strategy, there is apparently a strategy    for which either 

  (     )  (   ) (    )   (   ),  

or 

  (     )  (   ) (    )   (   ) and 

 (     )   (    )   (    )   (   ),  

In that case we say that    can directly invade S.  

 

 

 

We say that a strategy      can be indirectly invaded if there is a sequence of 

strategies           such that         is a sequence of neutral mutants, that is, for 

          

 (         )   (       )   (       )   (     )  
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and      can directly invade   , that is 

  (         )  (   ) (       )   (     ) 

or  

  (         )  (   ) (       )   (     ) and 

 (         )   (       )   (       )   (     ),  

With repeated games, where neutral mutants abound, it is important to account for 

indirect invasions too, and hence we use the concept of robustness against them: 

Definition 4: A strategy S is a robust against indirect invasions if it cannot be indirectly 

invaded. 

Without structure – that is, with     – this is the normal definition of a strategy that is 

RAII (20). Every strategy that is ESS is also RAII, but not vice versa, and every strategy 

that RAII is NSS, but not vice versa. 

These definitions allow the statement of all the results that follow.  

Example of an indirect invasion in TFT for     

 

 

 

 

 

 

 

 

TFT         Neutral mutant  Advantageous mutant 

 

 



22 

 

Examples of indirect invasions in All D for     

Into full cooperation (but not an equilibrium)  

 

 

 

 

 

 

 

 

All D             Neutral mutant            Advantageous mutant 

 

 

 

Into a (mixed, but not completely cooperative) equilibrium 

 

 

 

  

 

 

 

 

All D             Neutral mutant            Advantageous mutant 

 

 

 

Note that we restrict ourselves to pure strategies; not only do the definitions restrict the 

possible equilibrium strategies to pure ones, also the possible invaders against which 

stability is to be checked are pure. Thereby we follow the literature; all classic papers on 

evolution in repeated games do that (7, 21–25). We are however working on a more 

technical follow-up paper that shows that the same theorems that we prove in this paper 

also hold if we do admit mixed strategies.  
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4.3 Results 

For all results we will use the following payoff matrix. 

 Cooperate  Defect 

Cooperate b – c - c 

Defect b 0 

   

As all definitions above are insensitive to adding a constant to all payoffs, this is only a 

convenient normalisation. Every result derived below therefore applies equally well to 

other possible payoff matrices with the same costs and benefits of switching between 

cooperation and defection, such as for instance 

 Cooperate  Defect 

Cooperate 1 + b – c 1 – c 

Defect 1 + b 1 

   

 

 

 

 

In region 1 All D can directly invade all cooperative strategies. 

The boundary between region 1 and 2 is given by   
    

    
. If   is below this threshold, 

then any strategy that is not fully defecting, when playing against itself, can directly be 

invaded by All D. In order to verify that this is indeed the threshold, we first compute 

the payoffs of an at least somewhat cooperative strategy, and of All D, both against 

themselves and against each other.  

When All D plays against itself, it plays defect every round.  
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All D D  D  D  D   .  .  .  .     

All D D  D  D  D   .  .  .  . 

 

    

      

Therefore it gets payoff 0 every round, which thereby also is the normalized, discounted 

payoff of All D against itself. This is denoted as  (         )   .  

Now consider a strategy X that does not always play D when it meets itself. In that case 

there is obviously at least one moment in time where it plays C against itself. Assume 

that the first time it does so is at time    , where    . This implies that the first   

times, X plays D against itself. Note that   can be 0, so a strategy that starts cooperating 

immediately is not excluded.  

X D . . . D C ?   ?   ?  .  .  .  .   

X D . . . D 

 

 

C ?   ?   ?  .  .  .  .   

      

If all the question marks were C’s – note that playing against itself, they come in pairs 

of C’s or pairs of D’s – then it would earn a discounted, normalized payoff of   (  

 ). That puts a maximum on the payoff of X playing against a copy of itself;  (   )  

  (   ). 

X D . . . D C ?   ?   ?  .  .  .  .   

All D D . . . D 

 

 

D D  D  D  .  .  .  .   

      

When X and All D are playing each other, then the best case scenario for X – and the 

worst case scenario for All D – is if all the question marks are D’s. This way X only 

𝑛    

𝑛    
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loses   once, and All D only gains   once, which then happens in round    . This 

gives the following upper and lower bound, respectively.  

 (       )  (   )  (  ) 

 (       )  (   )   . 

With these bounds, we can show the following. 

 

Theorem 1 If   
    

    
, then no strategy X with  (   )    is an equilibrium.  

Proof  If    
    

    
 and  (   )   , then  

  (           )  (   ) (       )  (   ) (       ) 

 (  
    

    
) (   )      (   )   (   ) 

Hence X is not an equilibrium. 

 

 

In Region 1, 2 and 3, All D is a neutrally stable strategy. 

In regions 1 to 3, All D cannot be directly invaded, or, in other words, it is a neutrally 

stable strategy (NSS). In the proof, we first look at strategies X that do not always play 

D when they meet themselves, and for which  (   )   , and then at strategies X that 

do, and for which therefore  (   )   . If  (   )   , we again assume that it plays 

C for the first time in round    , with    . 
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Theorem 2 If   
    

    
, then All D is a neutrally stable strategy.  

Proof  Assume that   
    

    
.  

If  (   )   , then, since  (   )     (       ),  

  (   )  (   ) (       )   

 
    

    
 (   )  (  

    

    
)  (       )  

 
    

    
  (   )  

   

    
(   )  (  )    

  (           ) 

If   (   )   , then it must always play D against itself, and hence also 

against All D. Thereby  

  (   )  (   ) (       )     (           )  

and also  

 (   )   (       )       (       )   (           ).  

Because  (   )   , this completes the proof, as All D is now shown to 

satisfy Definition 3 for all X. 
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Also in region 2 all equilibria are fully defecting 

Consider a strategy X that does not always play defect against itself (i.e.,  (   )   ) 

and let     be a number of defections before the first time that C is played. We have 

already seen that  (   )    (   ). Now consider strategy    which is defined by 

the following automaton. 

 

 

 

When    plays itself, we get the following sequence of action profiles 

   D . . . D D C   C   C  .  .  .  .   

   D . . . D 

 

 

D C   C   C  .  .  .  .   

      

Thereby  (     )      (   ). When X and    are playing each other, we get the 

following sequence of action profiles.  

 

X D . . . D C ?   ?   ?  .  .  .  .   

   D . . . D 

 

 

D D  D  D  .  .  .  .   

      

Thereby we find the following upper and lower bounds: 

𝑛    

𝑛    

𝑛    
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 (    )  (   )  (  ) 

 (    )  (   )   . 

Theorem 3 If     
    

        
 and   

 

 
, then no strategy X with  (   )    is 

an equilibrium.  

Proof  Assume that indeed     
    

        
,   

 

 
 and  (   )    . First 

note that with      ,   
 

 
 implies that also   

 

    
 and thus 

          . Therefore  

  (     )  (   ) (    )   

     (   )  (   )(   )     

  ((   )   (         ))   

  ((   )  
    

        
(         ))   

  (   )   (   )  

Thereby X is not an equilibrium. 
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In region 3, 4 and 5, Grim Trigger (and TFT) are neutrally stable strategies 

The strategy Grim, or Grim Trigger, never triggers itself, and therefore results in pairs 

of C’s when playing against itself.   

Grim C  C  C  C   .  .  .  .     

Grim C  C  C  C   .  .  .  . 

 

    

 

Its payoff against itself therefore are    .  

Consider strategy    which is defined by the following automaton. 

 

 

 

It is clear that, given a strategy Y that plays D for the first time in round    , such a 

strategy cannot get a higher continuation payoff after round     against Grim Trigger 

than    does, nor can it get higher continuation payoffs against itself, after round    .  

   C . . . C D C   C   C  .  .  .  .   

   C . . . C 

 

 

D C   C   C  .  .  .  .   

      

Thereby we have  (     )  (  (   )  )(   ). Against Grim Trigger we see 

𝑛    

𝑛    
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Grim C . . . C C D  D  D  .  .  .  .   

   C . . . C D D  D  D  .  .  .  .   

      

Thereby we have  (       )  (    )(   )  (   )    and  (       )  

(    )(   )  (   )   . 

Theorem 4 If   
    

        
 or   

 

 
 then Grim Trigger is a neutrally stable strategy.  

Proof  Assume that Y is a strategy for which  (   )     . Then there must 

be a number     such that against itself, Y first plays   times C and 

then D the    st time. If   
 

 
, then not only  (   )      

 (         ), but also  (      )   (       )          

           (         ). That implies that certainly for 

      

  (   )  (   ) (      )   (         ) 

 

  If   
 

 
 and   

    

        
, then  

  (   )  (   ) (      )   

  (     )  (   ) (       )   

 (  (   )  )(   )

 (   )[(    )(   )  (   )   ]   

(             )     (         )   

(             )  
    

        
  (         )   

𝑛    
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(             )    (    )       (         ) 

Now assume that  (   )     . Then it must always play C against 

itself, and hence also against Grim Trigger. Thereby 

  (   )  (   ) (      )       (         )  

and also 

(   )   (      )       (      )   (         ). 

Because (   )     , this completes the proof, as Grim Trigger is 

now shown to satisfy Definition 3 for all Y.   

The same can be shown to hold for TFT. 

In region 4 and 5, all equilibria are at least somewhat cooperative 

The boundary between region 3 and 4 is given by   
    

    
. When we cross that 

boundary, from region 3 into region 4, All D ceases to be a neutrally stable strategy and 

even an equilibrium. The same is true for all fully defecting strategies; none of them is 

an equilibrium in regions 4 and 5.  If Z is a strategy that always plays defect against 

itself, then there is at least one strategy that can directly invade it in region 4 and 5, and 

that strategy is Grim Trigger. 

Z D  D  D  D   .  .  .  .     

Z D  D  D  D   .  .  .  . 

 

    

 

Grim C  C  C  C   .  .  .  .     

Grim C  C  C  C   .  .  .  . 
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Grim   C  D  D  D   .  .     

Z D  ?   ?   ?  .  .     
 

     

The discounted, normalized payoff of Z playing against a copy of itself is  (   )    

and the discounted, normalized payoff of Grim Trigger playing against a copy of itself 

is  (          )     . The payoff of Grim Trigger against Z is at least  (  

 ) . The payoff of Z against Grim Trigger is at most (   ) .  

The proof of the next theorem uses the fact that Grim Trigger can directly invade any Z 

with  (   )    for   
    

    
. 

 

Theorem 5 If   
    

    
, then no strategy Z with  (   )    is an equilibrium.  

Proof  Assume that indeed   
    

    
 and  (   )   . If  (      )   , then 

  (         )  (   ) (      )      (   ) 

If  (      )   , then 

  (         )  (   ) (      )   

 (   )  (   )(   )   

    

    
(   )  

   

    
(   )   

   (   )  

Thereby Z is not an equilibrium. 
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In region 5 all equilibria are fully cooperative 

If a strategy is not fully cooperative, then All C can directly invade it. When All C plays 

against itself, it plays C every round.  

All C C C C C   .  .  .  .     

All C C C C C   .  .  .  . 

 

    

      

Therefore it gets payoff     every round, which is also the normalized, discounted 

payoff of All C against itself.  

When Y not always plays C against itself, and  (   )     , then there is obviously 

at least one moment in time where it plays D. Assume that the first time it does play D 

is at time    , where    , which implies that the first   times, Y  plays C against 

itself. Note that   can be 0, so a strategy Y that starts defecting in round 1 is not 

excluded here. 

Y C . . . C D ?   ?   ?  .  .  .  .   

Y C . . . C 

 

 

D ?   ?   ?  .  .  .  .   
 

     

If all the question marks were C’s – when Y is playing against itself, they come in pairs 

of C’s or pairs of D’s – then it would earn a discounted, normalized payoff of (  

       )(   ), so that puts a maximum on the payoff of Y playing against a copy 

of itself;  (   )  (         )(   ).  

Y C . . . C D ?   ?   ?  .  .  .  .   

All C C . . . C 

 

 

C C  C  C  .  .  .  .   

𝑛    

𝑛    
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When Y and All C are playing each other, then the best case scenario for Y, and the 

worst case scenario for All C, is if all the question marks are D´s. This way Y also gets   

in every period following period    , and All C loses   in all of them. This then gives 

the following upper and lower bound, respectively; 

 (       )  (    )(   )      

 (       )  (    )(   )     . 

With these bounds, we can show the following. 

Theorem 6 If   
 (   )  

 
, then no strategy Y with  (   )      is an 

equilibrium.  

Proof  Assume that indeed   
 (   )  

 
 and  (   )     . Then  

  (         )  (   ) (      )   

 (   )  (   )[(    )(   )     ]   

 (   )   

 
 (   )  

 
(   )(   )

 
 ((    )(   )     )   

(   )(         )   (   ) 

  Hence Y is not an equilibrium. 
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In region 1a all fully defecting strategies are RAII. Everywhere else they are not. 

To show that in the left / down part of region 1 all fully defecting strategies are RAII, 

we begin by computing bounds on the payoffs of all possible mutants after a sequence 

of neutral mutants. Starting from strategy     , which is fully defecting when it plays 

against itself, we assume a sequence of neutral mutants        , for which it also 

must be the case that all of them always play D when they plays against themselves. 

Any non-neutral mutant      must however play C at least once. This gives us the 

following sequences and bounds on payoffs: 

   D . . . D D ?   ?   ?  .  .  .  .   

     D . . . D 

 

 

C ?   ?   ?  .  .  .  .   

      

The best case scenario for      would be if all the question marks for    were C’s and 

all question marks for      were D’s. Therefore it follows that  (       )  

  ( (   )    ).  

When      plays against itself, we get the following: 

     D . . . D C ?   ?   ?  .  .  .  .   

     D . . . D 

 

 

C ?   ?   ?  .  .  .  .   

      

The best case scenario for      would be if all the question marks were C’s, which 

implies that  (         )    (   ).  

Theorem 7 If   
   (   )

   (   )
 and   

 

   
, then any strategy X with  (   )    is 

robust against indirect invasions (RAII).  

𝑛    

𝑛    



36 

Proof  Assume that indeed   
   (   )

   (   )
,   

 

   
 and  (   )   .  

Let      and let         be a sequence of neutral mutants. This 

implies that  (     )    also for        . For any strategy      

we now find that   

  (         )  (   ) (       )   

   (   )  (   )  ( (   )    )   

   (   )

   (   )
(   )  

   

   (   )
 ( (   )    )   

   (     ) 

Hence an indirect invasion into X is not possible. The strict inequality is 

justified because   
 

   
 implies that  (   )          

The flip side of this result is that if   
   (   )

   (   )
, any strategy X with  (   )    can 

in fact be invaded indirectly. This can be shown by constructing mutant strategies    

and    for which those bounds are attained. Therefore we take the following two 

automata. 

 

 

  : 

 

 

  : 
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In region 4b and 5 all fully cooperative strategies are RAII. Everywhere else they 

are not. 

To show that in region 5 and in the upper sliver of region 4 all fully cooperative 

strategies are indeed RAII, we begin by computing bounds on the payoffs of all possible 

mutants after a sequence of neutral mutants. Starting from strategy     , which is 

fully cooperative when it plays against itself, we assume a sequence of neutral mutants 

        for which it also must be the case that all of them always play C when they 

plays against themselves. Any non-neutral mutant      must however play D at least 

once. This gives us the following sequences and bounds on payoffs: 

   C . . . C C ?   ?   ?  .  .  .  .   

     C . . . C 

 

 

D ?   ?   ?  .  .  .  .   

      

The best case scenario for      would be if all the question marks for    were C’s and 

all question marks for      were D’s. Therefore it follows that  (       )    

(    )   

When      plays against itself, we get the following: 

      C . . . C D ?   ?   ?  .  .  .  .   

     C . . . C 

 

 

D ?   ?   ?  .  .  .  .   

      

The best case scenario for      would be if all the question marks were C’s, which 

implies that  (         )  (         )(   ).  

 

𝑛    

𝑛    
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Theorem 8 If   
 

   (   )
 then any strategy Y with  (   )      is robust 

against indirect invasions (RAII).  

Proof  Assume that indeed   
 

   (   )
 and  (   )     . Let      and 

let         be a sequence of neutral mutants. This implies that 

 (     )      also for        . For any strategy      we now 

find that   

  (         )  (   ) (       )   

 (         )(   )  (   )(  (    ) )   

 

   (   )
(         )(   )

 
(   )(   )

   (   )
 (  (    ) )   

     (     ) 

  Hence an indirect invasion into Y is not possible. 

 

The flip side of this result is that if  
 

   (   )
 , any strategy Y with   (   )      

can in fact be invaded indirectly. This can be shown by constructing mutant strategies 

   and    for which those bounds are attained. Therefore we take the following two 

automata. 

 

  : 

 

  : 
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The figures below show the thresholds between the regions for     equal to 3, 2 and 

1.5, respectively. Notice that at         a new region has appeared that does not even 

have equilibria. 

 

 

Fig. S7. The five regions for benefit-to-cost ratios of   ,   and     

These predictions can be seen as encompassing two classic results, one from biology, 

one from economics. The unrepeated, one-shot game has equal gains from switching, 

and the game is played between two players. Together this implies that for     there 

is a straightforward link to Hamilton’s rule (26, 27, 4, 18). This link is visible on the 

vertical axis; all thresholds intersect with the vertical axis at      . This intersection 

represents a steep transition; the prediction changes from full defection below the 

threshold to full cooperation above the threshold. If assortment parameter   is 

interpreted as relatedness, which is reasonable in this setting (1–5), then that gives us 

Hamilton’s rule.  

On the horizontal axis, the intersection with the first solid line represents the threshold 

for the continuation probability in the Folk Theorem for repeated games (28, 29). The 

Folk Theorem states that all levels of cooperation can be sustained as (subgame perfect) 

Nash equilibria for sufficiently large  . The analysis here concerns neutrally stable 

strategies and strategies that are robust against indirect invasions. The sets of strategies 

that are neutrally stable, or robust against indirect invasions, are subsets of the set of 

Nash equilibria, but still cover all levels of cooperation.   
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5 Literature review of related papers on repetition and/or assortment 

The classic paper by Axelrod & Hamilton (7) pointed out the importance of assortment 

as well as repetition. Their stability analysis however focused exclusively on repeated 

games in well-mixed populations, while the role of assortment as a way to get 

cooperation started was pointed out verbally. Also the conditions they used to determine 

whether strategies are evolutionarily stable define what we now would call neutral 

stability, or weak evolutionary stability (15, 19). The fact that neutral stability does not 

exclude neutral mutants, and the fact that the presence of neutral mutants  would matter, 

was recognized in subsequent work (amongst others: 21–23, 30, 31). One paper shows 

that according to the standard definition of Maynard Smith & Price (16) no strategy is 

evolutionarily stable (21). A second uses another notion of evolutionary stability, and 

shows that also with that altered definition no ESS exists (22, see also 23). The dynamic 

implications of this alternative definition of evolutionary stability are explored in (25), 

where it is  concluded that while the standard definitions of evolutionary stability (16, 

see also 15) and neutral stability (19, see also 15) maintain a solid link with dynamics, 

this is not the case with the alternative definition from (22). They also show that there is 

a multitude of strategies that are neutrally stable. In the current  paper, we use the notion 

of a strategy that is robust against indirect invasions (RAII). This concept both 

acknowledges that there might be an important role to be played by neutral mutants, and 

it establishes a link with dynamics; the static notion of a strategy that is RAII links with 

stability in the replicator dynamics for sets of strategies in the same way as the static 

notion of an ESS links with stability in the replicator dynamics for single strategies (20). 

Other papers take a different approach and add stability of the solution to perturbations 

as a requirement for (evolutionary) stability (30, 31). By introducing a minimum 

probability of mistakes, and then letting that probability go to zero, (30) generates an 

evolutionary equivalent of Selten’s concept of a trembling hand perfect equilibrium. 

This is applied to repeated games in (31). None of these papers, however, combine 
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repetition and population structure; the analysis in (7, 21–23, 30, 31) always assumes a 

well-mixed population.  

Other, more recent papers that do combine games with (moderate levels of) assortment 

are (5) and (8–10).  The first considers a game where all individuals play a sequence of 

one-shot games, being re-matched with new partners every round (5). In their setting 

there is a ‘global’ continuation probability, which is the probability with which 

everyone goes on to have another interaction (with a different partner). The paper looks 

at the evolution of generalized reciprocity, and considers three strategies: pure 

cooperators, pure defectors, and generalized reciprocators. Generalized reciprocators 

either help if they have been helped in the previous round, or they do not help if they 

did not receive help in the previous round. This strategy is similar to TFT, but also 

different, because in their setting partners change between rounds. They find that in 

order for generalized reciprocity to be an ESS, at least some assortment is needed.  

The second considers a repeated N-player public goods game (8). This game is preceded 

by a communication stage, in which individuals signal their intent to punish defectors, 

and every repetition of the public goods game is followed by a punishment stage, in 

which individual defectors can be punished. They consider competition between two 

types – punishers and non-punishers – and find two equilibria: one with non-punishers 

only, and one with a mixture of the two types. They also find that assortment is not 

necessary for mixed equilibria to exist, but that assortment is needed to destabilize the 

all-defector equilibrium.  

Our approach differs from those taken in both of these more recent studies. We consider 

direct reciprocity rather than generalized reciprocity, examining repeated interactions 

between the same pairs of players; we consider a repeated two-player Prisoner’s 
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Dilemma, rather than an N-player game followed by a set of pairwise punishment 

games; and we examine an open-ended, infinite strategy space, rather than considering 

the interaction of 2 or 3 specific strategies. For this rich strategy space we have 

analytical results, as well as simulations that match the predicted dynamics.   

The game in (9) and (10) is similar to the game in the current paper, but also there 

attention is restricted to 2 and 3 strategies, respectively. 
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