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SI Materials and Methods. Microbiology.Escherichia coli cells [strain
RP437, wild type for chemotaxis(1)] were collected from a single
colony on an agar plate and grown overnight in 1 ml tryptone
broth [1% (wt∕vol) Bacto tryptone and 0.8% (wt∕vol) NaCl]
(2). The overnight culture was diluted 100-fold into 1 ml tryptone
broth and grown for 4.5 h to mid-log phase (OD600 ≈ 0.5). Cells
were grown at 30 °C with 265 rpm rotation in 15-mL round
bottom Falcon tubes. The final culture was diluted 10-fold into
“trap motility buffer” (TMB). TMB contained 70 mM NaCl,
0.1 mM methionine, 100 mM Tris-Cl, 2% (wt∕vol) glucose,
and an oxygen-scavenging system (80 μgml−1 glucose oxidase
and 13 μgml−1 catalase; EMD Chemicals 345386 and 219001,
respectively) to reduce oxidative damage to the cells by the infra-
red trapping light (3, 4). The oxygen-scavenging system was
added immediately before the beginning of the experiment.
Under anaerobic conditions, trapped cells grew and divided at
the expected rate, and exhibited run and tumble durations within
the range reported in the literature (4). We performed control
chemotaxis experiments using a 2-D swimming assay, following
the protocol from Alon et al. (5). We observed similar adaptation
times with (160� 30 s) and without (200� 30 s) the oxygen-
scavenging system in the medium. Methionine provides the
methyl groups necessary for chemotactic adaptation to occur
(6). Glucose acts as a substrate for the oxygen-scavenging system
and provides energy for cell swimming under anaerobic condition
(7). Various concentrations of L-aspartate (1–1,000 mM) were
added as a chemical stimulus.

Optical trap setup. A detailed description of the optical tweezers
design can be found elsewhere (4, 8). Briefly, the optical tweezers
component consisted of two orthogonally polarized beams from a
single 5-W, 1,064-nm diode-pumped solid-state laser (YLR-5-
1064-LP; IPG Photonics). Both beams were tightly focused to
generate optical traps by a 60 ×, water-immersion (1.2 numerical
aperture) microscope objective (Nikon). The separation between
the two traps was controlled by a piezo-actuated mirror stage
(Nano-MTA; Mad City Labs). An identical objective lens col-
lected transmitted light for position detection and bright-field
imaging. The flow chamber was positioned between the two ob-
jective lenses and was displaced relative to the two traps in all
directions by a motorized three-axis translational stage
(ESP300; Newport). Cell motion was detected directly by the
optical traps themselves, using back-focal plane interferometry,
in which trap light scattered by an object relays the object’s posi-
tion relative to the trap in all three directions (9). Epifluorescence
excitation in widefield configuration was provided by a 30-mW,
532-nm diode laser (TECGL-30; World Star Tech) to excite rho-
damine B for gradient calibration. Emitted fluorescence light
passed through a dichroic mirror (Di01-R532-25 × 36, single-
edge 532-nm laser dichroic; Semrock) and an emission filter
(HQ600/100 m-2p, band-pass 550–650 nm; Chroma) before being
imaged onto an intensified charge-coupled device (I-PENTA-
MAX; Princeton Instruments).

Fluidics.Glass coverslips (Fisher 12-545-M, 24 × 60 − 1) were so-
nicated in dry acetone for 5 min and rinsed with deionized water.
Remaining water was spun off by centrifuging at 1,000 rpm for
3 min. The flow channel pattern was cut out from Nescofilm
(Karlan) and placed between two coverslips, one of which had
custom-drilled holes (0.05-inch diameter) for inlets and outlets.
The Nescofilm flow channel pattern was bonded to coverslips by

melting on a hot plate for 4 min. The completed flow chamber
was inserted into a custom metal frame where inlet and outlet
tubings (Tygon) were screwed on for a tight seal (Fig. S1A). The
three channels of the flow chamber were continuously injected
with appropriate buffers using a syringe pump (PHD2000; Har-
vard Apparatus) at a linear speed of 70 μm∕s. We performed con-
trol experiments to test the effect of flow on cell swimming
parameters. Individual trapped cells monitored in 70 μm∕s flow
exhibited an approximately 10% decrease in run duration and an
approximately 20% decrease in tumble duration, compared to
no-flow conditions. The tumble bias remained relatively constant
over the same range of flow rates (N ¼ 8 cells). In step-up stimu-
lus experiments, the top channel was injected with TMB, L-aspar-
tate, and rhodamine B. The middle channel contained TMB only,
and the bottom channel contained cells in TMB. In step-down
stimulus experiments, the top channel contained TMB and rho-
damine B, the middle channel contained TMB and L-aspartate,
and the bottom channel contained TMB, L-aspartate, and cells.
Rhodamine B (Sigma R6626) (100 nM) was used to quantify the
gradient profile under the fluorescent illumination of the optical
trap setup (Fig. S1 B and C) prior to each experiment.

Post-processing of the optical trap data. All routines for analyzing
optical trap data were written in MATLAB (MathWorks). Raw
data obtained at 1,000-Hz sampling frequency were low-pass fil-
tered to 100 Hz, and the amplitude was normalized in non-over-
lapping 1-s windows (4). Two separate sets of y-direction (Fig. 1A)
signals obtained from the two ends of the cell body were com-
bined by taking the difference for enhancement in signal-to-noise
ratio. Using the combined y-direction signal, the peak frequency
component at each time point was obtained from a continuous
wavelet transform. Our wavelet analysis was performed using the
complex Morlet mother wavelet in a linearly scaled frequency
range of 2–40 Hz. Runs and tumbles were distinguished by apply-
ing a single threshold value to the peak frequency time trace. The
threshold was determined by examining the distribution of peak
frequencies and finding the local minimum between peaks corre-
sponding to run and tumble. For cases in which a clear local mini-
mum could not be found, an arbitrary threshold of 4 Hz was
applied. Detected runs and tumbles that were shorter than
100 ms were removed, as our detection limit was expected to be
one cycle in the sinusoidal pattern of the running cell (10-Hz
body-roll frequency is taken as an arbitrary standard) (4).

Quantifying adaptation features at the population-average level. The
run/tumble binary time traces were subsequently analyzed using
two different methods. In one method, tumble bias was deter-
mined from a 10-s moving window by calculating the fraction
of time the cell spent tumbling within the window, and moving
the window one data point at a time by 0.01 s (Fig. S2). Because
individual tumble bias traces were noisy (σ∕μ ¼ 0.53� 0.16 at
steady-state, n ¼ 186 cells), they were averaged across the popu-
lation (Fig. 2 A and B). From the population-averaged tumble
bias traces, adaptation time and overshoot were quantified by fit-
ting to analytical expressions. For step-up stimuli (Fig. 2A), the
poststimulus portion of the data was fit to the expression BðtÞ ¼
1∕ð1þ a expðlnðbÞ expð−cðt − tadaptÞÞÞÞ using the nonlinear fitting
function in MATLAB with a and b as constants and c and tadapt
(the adaptation time) as fitting parameters. The constants were
defined as a ¼ ð1 − B∞Þ∕B∞ and b ¼ 1þ 1∕ð1 − B∞Þ, where B∞
is the steady-state tumble bias (mean of the last 50 s of data),
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which ensured that BðtÞ ¼ B∞∕2 when t ¼ tadapt. This expression
is an approximate analytical solution for BðtÞ following the che-
motaxis model of Tu et al. (10) (see Simulations) and the approx-
imations outlined in the SI Text. Because BðtÞ above does not
have an overshoot feature, we fit the residual using the phenom-
enological form RðtÞ ¼ ðdata − BðtÞÞ to RðtÞ ¼ a tb expðctÞ,
where a, b, and c are fitting parameters. Normalized overshoot
amplitude was determined as ðBmax − B∞Þ∕B∞, where Bmax is the
maximum of BðtÞ þ RðtÞ. For step-down stimuli (Fig. 2B), the
poststimulus portion of the data was fit with a phenomenological
expression BðtÞ ¼ B∞ þ a expð−t∕bÞ þ c expð−t∕dÞ using the
nonlinear fitting function inMATLAB with a, b, c, and d as fitting
parameters. From this fit, the adaptation time was tadapt ¼ ln b
and the normalized overshoot amplitude was ðBmin − B∞Þ∕B∞,
where Bmin is the minimum of BðtÞ.

Quantifying adaptation features at the single-cell level.Alternatively,
the run/tumble binary time traces were analyzed in the “event
domain” (11). In this method, the run/tumble binary time traces
were analyzed by pairing each run with its subsequent tumble
(11). For each run/tumble pair event we determined a corre-
sponding tumble bias value [tumble duration / (run duration +
tumble duration)] and a duration (run duration + tumble dura-
tion) (Fig. S5). Population-averaged event traces (Fig. 3 A andD)
were also constructed event by event, where the tumble bias and
duration were averaged across the population for each run/tum-
ble event, enumerated relative to the application of the stimulus.
Quantification of abruptness, adaptation time, and overshoot
from individual cells was performed in the event domain. For
abruptness, we determined the number of “events to adaptation”
(ETA) using the Mann–Whitney U test, a nonparametric statis-
tical test for assessing the null hypothesis that two independently
obtained samples are equal in magnitude (12). The reference
sample consisted of 65 events prestimulus, normalized by the
mean of the last 20 events poststimulus to compensate for the
possibility of nonexact adaptation. The test sample consisted
of a moving five-event window immediately following the appli-
cation of stimulus. The five-event window was moved one event at
a time until adaptation was scored when theU statistic of the test
sample approached the expected U within 50% of the standard
deviation inU. ETA was the number of events that led to adapta-
tion, and adaptation time was the total duration of the events that
led to adaptation. We found that our statistical analysis was more
robust when using parameters that increase in response to stimuli
and then fall back down as the cell adapts (i.e., run duration for
step up, tumble bias for step down). Normalized overshoot am-
plitude was calculated using the formula (Bias_middle—Bias_-
after) / Bias_after, where Bias_middle was the mean tumble
bias of sixth through 15th events following adaptation as deter-
mined above, and Bias_after was the mean tumble bias of the
final 20 events poststimulus. ETA, adaptation time, and normal-
ized overshoot amplitude of population-average event traces
were determined in the same way as the individual event traces
(Fig. S8).

Numerical simulations. Simulating chemotactic adaptation. In order
to explore the effect of varying the receptor cluster size and motor
switching cooperativity on the abruptness of adaptation
(Fig. S10B), we performed stochastic simulations to generate a
population of run/tumble binary time traces for each parameter
condition. All simulations were implemented in MATLAB. We
followed closely the model by Tu et al. (10). The kinase activity
of CheA,A, was determined as a function of ligand concentration
([L]) and methylation level (m) according to Að½L�; mÞ ¼
1∕ð1þ expðNðfLð½L�Þ þ fmðmÞÞÞÞ, where N is the receptor clus-
ter size, and fL ¼ lnð1þ ½L�∕KoffÞ − lnð1þ ½L�∕KonÞ and fm ¼
2ð0.5 −mÞ are the free energy functions that depend only on

[L] and m, respectively (10). Free energies were in units of
kBT. Note that the value of A ranges from 0 to 1. A can be inter-
preted as the probability that each CheA is in its active (phos-
phorylating) state. Koff (5 μM) and Kon (254 μM) are ligand-
binding constants for receptors associated with CheA in inactive
and active states, respectively. The values for Koff and Kon were
obtained from fitting the expression for fL to our adaptation time
data (Fig. 2C). The exact values of Koff and Kon affect only the
adaptation time and not the abruptness of adaptation. At each
time step (Δt ¼ 0.01 sec, chosen to match the data rate; shorter
time steps did not change the results of simulation), the average
methylation level of the receptor-CheA complex was adjusted ac-
cording to dm∕dt ¼ VRð1 −AÞ − VBðAÞ (13). VR (0.01 s−1)and
VB (0.02 s−1) are methylation and demethylation rates, respec-
tively (14). As with Koff and Kon, the exact values of VR and VB
only affect the adaptation time. The CheA activity, A, was then
converted to the flagellar motor bias, B, via a highly cooperative
relation BðAÞ ¼ AH∕ðAH þKA

HÞ (15). Note that, as with A, B
ranges from 0 to 1. KA is the value of A at which B is 1∕2.
Although B is technically a function of CheY-P concentration
and not CheA activity, it is commonly assumed that CheY-P con-
centration and CheA activity are proportional because CheY-P
levels equilibrate faster than other processes (16). Because a gen-
eral model on how the motor bias gets converted to the cell’s tum-
ble bias is lacking, we assumed they are proportional. At the first
time point, every simulated cell started from the tumble state. At
each subsequent time point, the cell had a constant probability of
switching to the run state. When the cell was in the run state, on
the other hand, its probability of switching to the tumble state
depended on the tumble bias. As a result, the average tumble
duration did not depend on tumble bias but the average run dura-
tion did. This was consistent with a previous study and our own
data (17) (Fig. S6). For each combination ofN andH values, 100
run/tumble binary time traces were generated. The simulated
traces were analyzed in the same way as the experimental data
as described above.

Simulating the effect of variations in protein expression level. In
order to reproduce the observed population variation in adapta-
tion time (Fig. 3C), we simulated a population of cells with sto-
chastic variation in CheR and CheB expression levels. Expression
levels of CheR and CheB were varied in a concerted manner be-
cause they are expressed from the same operon (18). Simulations
were run in the same manner as above, except that values of VR
and VB were selected from a Gaussian distribution with 10% or
20% standard deviation. We note that this degree of protein num-
ber fluctuations is in good agreement with typical values found
in the literature (19). This fluctuation level is also close to the
theoretical expectation based on the known CheR and CheB
average copy numbers in the cell (20), and the assumption that
proteins are produced in bursts of 5–10 per mRNA (21, 22).
Mean VR and VB values were the same as above. One thousand
cells were simulated for a given level of variation in CheR and
CheB expression and stimulus strength. We analyzed the simu-
lated data traces using the same analysis routine used for experi-
mental data to obtain the adaptation time. The coefficient of
variation in adaptation time for the simulated adaptation times
and the experimentally measured adaptation times (Fig. 3C) are
shown in Fig. S4B.

Simulating the effect of flagellar motor remodeling.We performed
simulations to investigate the effect of flagellar motor remodeling
(23) on adaptation kinetics (see SI Discussion). Following Yuan
et al. (23), we used a modified expression relating the motor CW
bias B to CheA activity A: BðAÞ ¼ ð1þA∕KAÞFliM∕ðð1þA∕
KAÞFliM þ Pð1þA∕ðKACÞÞFliMÞ, where FliM is the number of
FliM units in the c-ring of the flagellar motor, P is the ratio of
the probability that the motor is in the CCW state to the prob-
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ability that it is in the CW state in the absence of CheY-P
(A ¼ 0), and C is the ratio of CheY-P dissociation constants for
the CCW and CW states, respectively (23). The time-dependent
FliMðtÞ was modeled according to dFliM∕dt ¼ V onðFliMmax−
FliMÞ − V offðAÞFliM. Here, FliMmax (assumed to be 45 in our
simulations) is the maximum number of FliM units that can be
in the c-ring, and V on (¼0.02 s−1) and V off (¼0.0194 s−1) are
association and dissociation rates of FliM to the c-ring. V on and
V off satisfy the steady-state condition V onðFliMmax − FliM∞Þ ¼
V offðA∞ÞFliM∞, where A∞ (¼1∕3) and FliM∞ (¼34) (14, 23–
25) are steady-state CheA activity and number of FliM units,
respectively. The flagellar motor remodeling was incorporated
in the simulations by varying the value of FliM according to the
CheA activity, A, at each time point. The results of these simula-
tions are shown in Fig. S10D.

SI Discussion. Review of the E. coli chemotaxis network.A cell’s swim-
ming state is controlled by a cascade of interactions (26, 27)
(Fig. S10A). Chemical input signals from the environment are
sensed by transmembrane receptors that are coupled to the in-
tracellular kinase CheA. Commonly, CheA activity is parame-
trized by the quantity A, the probability (ranging from 0 to 1)
that the kinase is in its active (phosphorylating) state. The activity
is a function of the receptor ligand concentration (28); an in-
crease in chemoattractant leads to a decrease in activity and vice
versa. In addition to ligand binding, methylation of the receptors
also modulates kinase activity; the higher the methylation, the
higher the activity. Thus,

A ¼ Að½L�; mÞ; [S1]

where [L] is the ligand concentration and m is the number of
methylated receptor sites (ranging from 0 to 8). Notably, A is
an increasing function of the methylation m. Receptors are also
known to interact and cooperatively modulate CheA kinase
activity (16, 29). Ligand binding to one receptor affects the CheA
activity in a neighborhood of N interacting receptors (29)
(Fig. S10A). The net consequence of this interaction is to multiply
the effect of methylationm on A by the interacting cluster sizeN
(29, 30).

At the same time, the methylation rate of the receptors is also a
function of CheA activity. Methylation and demethylation are
controlled by the proteins CheR and CheB, respectively, whose
activity depends on A (31). Thus,

dm
dt

¼ FðAÞ: [S2]

Though the detailed functional form of FðAÞ depends on the
model used (10, 32), for our purposes it is sufficient to state that
FðAÞ is a decreasing function ofA; as CheA activity increases, the
rate of methylation decreases. Eqs. S1 and S2 describe the nega-
tive feedback loop that is responsible for adaptation. As CheA
activity is perturbed from its steady-state (by a step up or step
down in chemoattractant concentration, for example), this feed-
back loop ensures its eventual return to the same steady-state (5,
31, 33, 34).

The next link in this chain of interactions is the phosphoryla-
tion of the signaling protein CheY by CheA. In its active form,
CheY-P binds to the flagellar motors and induces a conforma-
tional switch from CCW to CWrotation (17, 35). This interaction
is known to be highly cooperative, and described by a sigmoidal
function (15) (Fig. S10A). At subsaturating conditions, the con-
centration of CheY-P is proportional to CheA activity, and the
CW bias of the motor B (defined as the fraction of time spent
in the CW state, a number ranging from 0 to 1) can be written
as a Hill function

B ¼ AH

AH þKH
A

; [S3]

where H ≈ 10 (depicted in Fig. S10A). Importantly, measure-
ments have shown that the steady-state CheA activity sits in the
steepest part of this function: A∞ ¼ 0.33, B∞ ¼ 0.35 (where the
subscript ∞ denotes the steady-state), and KA ¼ 0.35 (15, 32).

The last component of the cascade of interactions occurs
between the flagellar motors and the whole cell. As individual
motors that comprise the flagellar bundle undergo a conforma-
tional switch from CCW to CW rotation, the cell swimming state
switches from a run to a tumble (36). It is important to note that
the individual motors in the cell are not perfectly synchronized
(37–39), and that the manner in which the collective CCW/CW
state of the motors dictates the run/tumble state of the whole cell
remains poorly understood (40, 41).

Adaptation abruptness does not reflect the switch-like behavior of the
flagellar motor. As discussed in the main text, it is natural to as-
sume that the switch-like manner in which the flagellar rotational
state depends on CheY-P level plays a role in abruptness of adap-
tation. However, we found that this cooperativity, parameterized
by the large Hill coefficient (H ≈ 10) (15), has little to no effect
on the abruptness of adaptation (Fig. S9A). Instead, we believe
the evidence points towards alternate mechanisms further dis-
cussed below. The derivation that follows explains this in the con-
text of accepted mathematical model of chemotaxis network.

The strong nonlinearity in the Hill equation Eq. S3 and the fact
that the CheA steady-state level is in the steepest portion of the
curve mean that the bias B is only sensitive to changes in A near
its steady-state level A∞. In the context of adaptation, the
temporal response in B is almost solely determined by A in its
approach to the steady-state. For example, in a chemoattractant
step-up experiment, 75% of the amplitude of the adaptation re-
sponse in biasB (as it increases from 0 toB∞) comes from the last
approximately 15% of the amplitude of the response in A as it
approaches A∞.

To quantify this effect, we consider the temporal response in
BðtÞ andAðtÞ at a reference time point tadapt, the adaptation time.
This was defined in the main text as the time elapsed between the
stimulus and when the bias returned to half of its steady-state va-
lue. Expanding AðtÞ in a Taylor series about this time yields

AðtadaptÞ ≈A∞ þ dA
dB

�
�
�
�
B∞

ðBðtadaptÞ − B∞Þ ¼ A∞ −
dA
dB

�
�
�
�
B∞

·
B∞

2
:

[S4]

The second term depends inversely on the slope of the Hill
function, dB∕dA, which is proportional to H. Using previously
determined values (15), the second term is approximately
0.25∕H ¼ 0.025 ≪ A∞ (i.e., small when H is large). Thus, we
may write AðtÞ ¼ A∞ − ΔAðtÞ, valid for times t≳ tadapt, where
ΔA is small ( ≪A∞) and proportional to 1∕H.

Based on this observation, we can determine the temporal re-
sponse of AðtÞ for t≳ tadapt (i.e., how A approaches A∞ in time).
Taking Eq. S2 and Taylor expanding FðAÞ near the steady-state,

dm
dt

≈ FðA∞Þ −
dF
dA

�
�
�
�
A∞

ΔAðtÞ ¼ −
dF
dA

�
�
�
�
A∞

ΔAðtÞ; [S5]

where, by definition, FðA∞Þ ¼ dm∕dt ¼ 0 at the steady-state.
Using the chain rule, we can further write the rate of change for
CheA activity in terms of the rate of change in methylation:

dA
dt

¼ dA
dm

dm
dt

¼ −
dΔA
dt

: [S6]
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Substituting Eq. S5 into Eq. S6, we obtain

dΔA
dt

≈
dA
dm

dF
dA

�
�
�
�
A∞

ΔA: [S7]

The first factor on the right-hand side of the equation represents
how CheA activity is amplified by methylation; this factor is po-
sitive, and also proportional to N, the cluster size for interacting
receptors. The second factor represents how the methylation rate
depends on CheA activity at the steady-state; this factor is nega-
tive. These two factors combine to define the time constant with
which CheA activity approaches its steady-state:

dΔA
dt

≈ −
N
T
ΔA; [S8]

where we have made the dependence on cluster size N explicit.
Thus, CheA approaches its steady-state exponentially according
to ΔAðtÞ ¼ ΔA0 expð−Nt∕TÞ (depicted in Fig. S9A).

Based on the above, we now use the Hill function, Eq. S3, to
estimate the temporal response in bias BðtÞ, given AðtÞ near the
steady-state. For our purposes, we specifically determine the rate
of change in BðtÞ at the adaptation time; this will provide an ap-
proximate measure for the abruptness of the adaptation response
(Fig. S9A), and its dependence on network parameters. Based on
Eq. S4 and S8, the rate of change in CheA activity at the adapta-
tion time is

dA
dt

�
�
�
�
tadapt

≈
N
T
ΔAðtadaptÞ ¼

N
T
B∞

2

dA
dB

�
�
�
�
B∞

∝
1

H
N
T
; [S9]

proportional to 1∕H. Using the chain rule, the rate of change in
BðtÞ at the adaptation time is then

dB
dt

�
�
�
�
tadapt

¼ dB
dA

�
�
�
�
AðtadaptÞ

dA
dt

�
�
�
�
tadapt

∝ H ·
1

H
N
T

∝
N
T
; [S10]

which is independent ofH, given Eq. S9 and the fact that the slope
of the Hill function dB∕dA at the adaptation time is proportional
to H. Thus, the abruptness in the adaptation response for motor
bias B does not depend on the sigmoidicity of the Hill function,
Eq. S3, provided thatH is sufficiently large. This is depicted sche-
matically in Fig. S9A. While cooperativity amplifies the motor’s
response to changes in CheA activity (by a factor of H), it also
makes the motor sensitive to small changes in CheA activity only
near its steady-state. As CheA activity exponentially approaches
steady-state during adaptation, its rate of change becomes smal-
ler. Thus, the larger H is, the smaller the rate of change in CheA
activity that engenders the motor response. These compensating
effects result in a flagellar motor temporal adaptation response
whose abruptness is largely independent of H (Fig. S9A). [Note
thatH does affect the adaptation time, but to a good approxima-
tion the shape of the response BðtÞ remains unchanged.] Impor-
tantly, however, the dependence on cluster size N remains.

Possible role of dynamic receptor clustering in creating a stimulus-de-
pendent adaptation abruptness. Clusters of chemotaxis receptors
are known to be localized predominantly at the cell poles (42,
43), where the number of receptors in each cluster can range from
tens to over 1,000 in the case of the Tar receptor (44). As men-
tioned above, experimental evidence indicates that receptors in-
teract together to amplify their effect on CheA activity in
response to external chemical inputs (29). The mathematical
model (above) for the chemotaxis network (10, 32) further pre-
dicts that larger numbers of interacting receptors will result in a
more abrupt response in CheA activity. Thus, abruptness in adap-

tation response likely originates from the clusters of interacting
receptors that cooperatively modulate the activity of the kinase
CheA. The abruptness at the level of CheA activity then propa-
gates through the network to the level of whole-cell swimming
behavior. Experimentally, CheA activity has only been measured
in cell populations (13, 16, 45). We believe this may explain why
abrupt adaptation kinetics in CheA has not yet been observed.

Experimental evidence also indicates that receptor clustering
may be dynamic; when E. coli and Bacillus subtilis cells are stimu-
lated with saturating amounts of attractant, the polar clusters
disintegrate upon stimulation and reappear after the cells have
had enough time to adapt (46, 47). In another study, Borrok
et al. (48) found through chemical cross-linking studies that at-
tractants destabilize receptor clusters and repellents stabilize
them. These studies support a model in which the degree of che-
moreceptor clustering changes dynamically depending on ligand
binding. Given that the degree of receptor clustering decreases at
higher attractant concentrations, it would be expected that their
cooperative effect on CheA activity—and thus the abruptness in
adaptation—would decrease. We note, however, that a number of
studies found that receptor methylation level increases the degree
of receptor clustering and hence the response cooperativity (30).
Because methylation should increase with stimulus, this would
predict that abruptness would decrease with stimulus, counter
to the experimentally observed trend. We speculate that methyla-
tion level is low under our experimental conditions, and that this
effect may be negligible. Unfortunately, experimental estimates
of the methylation level exist only for mutant strains, lacking
native receptors (30). Furthermore, theoretical estimates for
the parameters that determine the steady-state methylation level
vary greatly between different studies (10, 32). In our own simu-
lations (which reproduce the experimental adaptation times),
methylation saturates at about 2.5 out of the eight available sites
at the highest stimulus level. It is also conceivable that the
changes in receptor cluster size caused by methylation are small
compared to those produced by ligand binding. More studies are
needed to quantify the importance of these competing trends.

To investigate the possible role of receptor clusters, we per-
formed simulations of chemotactic adaptation generalized to
allow for strongly interacting receptor clusters of sizeN. Numeri-
cally solving the response to step up and step down in attractant
concentration, we found that the simulated ETAs vary inversely
with cluster size N (Fig. S10B). Specifically, the experimentally
observed stimulus-dependent abruptness (Fig. 3E) can be repro-
duced by assuming thatN varies between approximately 18 and 3,
decreasing with stimulus strength (Fig. S10C). This range of
values is consistent with numbers cited in the literature for wild-
type (16, 30, 49) and mutant strains (30), and follows the expected
trend with stimulus level. Thus, our simulations support the no-
tion of dynamic receptor clustering as the source for adaptation
abruptness and stimulus dependence. We also note that simula-
tions corroborate our view that ETA is unaffected by the coop-
erativity H exhibited by CheY-P (Fig. S10B, Inset).

Possible role of motor remodeling in adaptation abruptness. Recent
experiments (23) have uncovered another dynamic process dur-
ing adaptation: flagellar motor remodeling. FliM, the component
of the flagellar motor c-ring and the protein to which CheY-P
binds to engender the conformational switch from CCW to CW
rotation, is rapidly exchanged with free FliM in the cytosol. New
evidence indicates that CheY-P binding increases the rate of dis-
sociation of FliM from the c-ring, destabilizing it. As a result,
changes in CheY-P levels in the cell during adaptation lead to
changes in the flagellar motor structure. The net effect is that the
dependence of the motor CW bias B on CheA activity A is
dynamic. According to new models, the Hill function Eq. S3 is
modified to
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BðAÞ ¼ ð1þA∕KAÞFliM
ð1þA∕KAÞFliM þ Pð1þA∕ðKACÞÞFliM ; [S11]

where P is the ratio of the probability that the motor is in the
CCW state to the probability that it is in the CW state in the ab-
sence of CheY-P (A ¼ 0), and C is the ratio of CheY-P dissocia-
tion constants for the CCW and CW states (23). The number of
FliM proteins in the c-ring, FliM, is time-dependent, following

d
dt

FliM ¼ V onðFliMMAX − FliMÞ − V offðAÞFliM [S12]

where V on and V off are the binding and (CheA-dependent) dis-
sociation rates for FliM, and FliMMAX is the maximum number of
FliM accommodated in the c-ring. The Hill function Eq. S3 and
the new model Eq. S11 coincide with the following parameter
values: FliM ¼ 34, P ¼ 107 (50), and C ¼ 4.1 (15, 51).

In principle, this recently discovered motor-remodeling me-
chanism can reproduce several features of adaptation kinetics
that we observe at the whole-cell level. During the initial response
to a step up in attractant, CheA activity drops, increasing the

number of FliM in the flagellar motor. As shown schematically
in Fig. S9B and observed directly in experiments (23), this in-
crease in FliM shifts the sigmoidal CW bias vs. CheA activity
curve (B vs. A) to the left. As a result, the steepest part of this
curve no longer coincides with the steady-state CheA activity
A∞. Provided the shift persists as CheA activity A increases to-
ward the steady-state, the time dependence of the CW bias BðtÞ
will be determined by AðtÞ at a time point that precedes its slow,
exponential approach to the steady-state A∞, where its rate of
change is far more rapid. This effect can lead to more-abrupt
adaptation kinetics at the motor level (shown schematically in
Fig. S9B). In addition, an overshoot response may be obtained if
the remodeling shift persists at times long enough that A has
approached its steady-state value. Whether these features are re-
produced by FliM remodeling depends ultimately on how the
time scales for motor remodeling compare to those for adapta-
tion at the CheA level of the network.

We performed simulations incorporating flagellar motor remo-
deling (see SI Materials and Methods). As shown in Fig. S10D, we
could reproduce an overshoot response for a reasonable choice of
parameters.
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Fig. S1. Laminar flow chamber. (A) Photo of the laminar flow chamber used in this study. Food dyes of different colors were injected into different streams for
illustration. (B) Fluorescence microscopy image of a typical gradient established in the flow chamber. The pixelated appearance of the image comes from the
montage of multiple fields of view. Green dots indicate the pre- and poststimulus measurement locations, and the green arrow indicates the translocation
direction of the trapped cell when stimuli are applied. (C) Concentration profile measured under the experimental conditions (linear flow speed ¼ 70 μm∕s,
500 μmdownstream fromwhere two streams merge). Fluorescence intensity of rhodamine B was measured at various points along the perpendicular direction
(blue circles). Red and black smooth lines are theoretical concentration gradient curves with diffusion coefficient D ¼ 320 μm2∕s (rhodamine B) and
D ¼ 1000 μm∕s (small molecules), respectively. Green arrows indicate the pre- and poststimulus measurement locations. Theoretical concentrations at these
locations are <1 and >99% of the maximum concentration at the low and the high ends, respectively. Taking the liberal estimation of D ¼ 1000 μm2∕s for
aspartate, cells that are moved along the concentration gradient at a speed of 100 μm∕s experience the change from 10 to 90% of the maximum concentration
over a span of about 3 s.

Fig. S2. Conversion from binary trace to tumble bias time trace. (A) A 400-s segment of a binary series from a single cell that underwent a 100-μM aspartate
step-up stimulus at t ¼ 0. (B) The tumble bias at each time point (Δt ¼ 0.01 s) is determined from a 10-s moving window (red box) over the binary series.
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Fig. S3. Exactness of adaptation to step-up and step-down stimuli. (A) Exactness of adaptation determined from the individual cell event traces (blue tri-
angles, mean� standard error of the mean), population-average event traces (black circles), and population-average time traces (red squares). (B) Same as A,
for step-down stimuli. (C) Histograms of single-cell adaptation exactness in response to varying magnitudes of step-up stimuli. (D) Same as C, for step-down
stimuli. Black lines are fits to a Gaussian. Color notations and sample sizes at each stimulus level are the same as in Figs. 3 and 4. From event traces, exactness was
defined as Bias_after/Bias_before, where Bias_after was the mean tumble bias of the final 20 events poststimulus, and Bias_before was the mean prestimulus
tumble bias. From population-average time traces, exactness was define as the ratio of mean tumble bias of last 50 s after stimulus to mean tumble bias of 200 s
before stimulus.
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Fig. S4. Cell-to-cell variation in adaptation time. (A) Individual binary traces for 39 cells that underwent a 100-μM L-aspartate step-up stimulus (at t ¼ 0). All
cells initially respond to the stimulus by entering a prolonged run. The subsequent return to run/tumble switching occurred at different times for different cells.
Individual cell traces are colored randomly. (B) The coefficient of variation (standard deviation divided by the mean) of adaptation time as a function of the
average adaptation time. Blue circles, experimental data binned according to the applied stimulus strengths. Gray squares, numerical simulations of the che-
motactic response at various stimulus strengths. For each stimulus strength, a population of 1,000 cells was simulated. Variation in adaptation times was
obtained by selecting the methylation and demethylation rates by CheR and CheB for each cell from a Gaussian distribution with 10% (light gray squares)
and 20% (dark gray squares) standard deviation. The ratio of methylation and demethylation rates was held constant. In all plots, error bars denote standard
error, obtained by repeated resampling of the dataset (bootstrapping). Solid lines are guides to the eye. For details of the numerical simulations see SI Materials
and Methods.
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Fig. S5. Conversion from binary trace to tumble bias event trace. (A) A 600-s segment of a binary series from a single cell that underwent a 10-μM aspartate
step-up stimulus at t ¼ 0. (B) The tumble bias is calculated for each event pair consisting of a run and a tumble. Events are enumerated starting from the first
event following the stimulus. (C) In addition to the tumble bias value, each event is aligned in time to the binary trace for visualization purposes.

Fig. S6. Changes in average run and tumble durations following stimuli. (A) Population-averaged run durations of the first 10 events following step-up
stimuli. Different stimulus strengths are color-coded as in the main figures. (B) Same as A, for tumble durations. (C) Same as A, for step-down stimuli. (D)
Same as B, for step-down stimuli. Error bars designate standard error of the mean.

Min et al. www.pnas.org/cgi/doi/10.1073/pnas.1120218109 9 of 12

http://www.pnas.org/cgi/doi/10.1073/pnas.1120218109


Fig. S7. Quantifying the adaptation parameters of an individual cell. (A) An 800-s segment of a tumble bias event trace from a single cell that underwent a 10-
μM aspartate step-up stimulus at t ¼ 0. Prestimulus events are in brown and poststimulus events are in blue. The four events that lead up to the cell’s adapta-
tion are highlighted in green (see SI Materials andMethods for determination of the number of events to adaptation). The 10 events following adaptation and
the last 20 poststimulus events used to determine overshoot are highlighted in black and red, respectively (SI Materials and Methods). Exactness is determined
from the mean tumble bias of the last 20 poststimulus events (red horizontal line), and the mean prestimulus tumble bias (brown horizontal line). (B) Zoomed-
in view of the four events that lead up to adaptation.

Fig. S8. Quantification of adaptation parameters at the single-cell and the population-average levels. (A) Adaptation parameters in response to step-up
stimuli. From top to bottom, adaptation time, number of ETA, and normalized overshoot amplitude quantified from the individual cell event traces (blue
triangles, mean� standard error of the mean), population-average event traces (black circles), and population-average time traces (red squares). Schematics
representing the step-up stimulus and each of the three behavioral parameters are shown on the left. ETA values were not obtained from population-average
time traces. (B) Same as A, for step-down stimuli.
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Fig. S9. Abruptness and its dependence on cooperative switching and FliM remodeling of the flagellar motors. (A) The effect of motor cooperativity. The
schematic describes how the time course in CheA activity during adaptation, AðtÞ, (gray trace, Bottom; CheY-P level is proportional to CheA activity) is mapped
into a corresponding motor bias time course, BðtÞ, (blue and red traces, Right) through the sigmoidal motor bias vs. CheA activity function BðAÞ (red and blue
traces, Center). Two different Hill functions are shown, with high Hill coefficient H (blue) and low H (red). At the adaptation time tadapt, the high-H function
amplifies changes in AðtÞ near its steady-state, where its rate of change (represented by the shaded blue area) is small. Conversely, for the low-H function, the
rate of change in AðtÞ at tadapt is larger (shaded red area), but amplified less. These compensating effects lead to amotor bias time course whose rate of change
at tadapt (its abruptness) is largely independent of H. See SI Discussion for more details. (B) The effect of FliM remodeling. The schematic describes how the time
course in CheA activity during adaptation, AðtÞ, (gray trace, Bottom; CheY-P level is proportional to CheA activity) is mapped into a corresponding motor bias
time course, BðtÞ, (blue and green traces, Right) through the sigmoidal motor bias vs. CheA activity function BðAÞ (blue and green traces, Center). Two different
motor curves are shown, which correspond to the flagellar motor in its steady-state configuration (blue) and remodeled configuration (green). The steady-state
motor curve corresponds to the flagellar motor with equilibrium number of FliM units (low FliM), whereas the remodeled motor curve corresponds to the
flagellar motor with transiently increased number of FliM units (high FliM). At the adaptation time tadapt, the low-FliM curve amplifies changes in AðtÞ near its
steady-state where its rate of change (represented by the shaded blue area) is small. On the other hand, for the high-FliM curve, the rate of change in AðtÞ at
tadapt is larger (shaded green area), and hence amplified more. As a result, the motor bias undergoes a more abrupt change in the case of the high-FliM curve.
See SI Discussion for more details.
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Fig. S10. Possible mechanisms giving rise to the observed adaptation abruptness and overshoot. (A) A schematic of the chemotaxis signaling network. Re-
ceptor clusters of size N modulate the CheA kinase activity in a cooperative manner, influenced by ligand binding and methylation/demethylation by CheR/
CheB. CheA phosphorylates CheY into CheY-P, which then diffuses and binds the flagellar motors. The switching of the flagellar motors’ rotational direction
caused by the binding/unbinding of CheY-P to the FliM units on the motor occurs with cooperativity H. Binding of CheY-P to FliM, at the same time, lowers
FliM’s affinity to the rest of the flagellar motor. As a result, the number of FliM units on a motor increase over time in the absence of CheY-P. (B) The number of
ETA as a function of the receptor cluster size N. Chemotactic response of individual cells to a 100-μM step up in L-aspartate concentration was simulated by
numerically solving a stochastic model of the chemotaxis response, and the mean ETA was obtained by fitting exponential functions to the histogram of
individual ETA values from 100 cells. Error bars denote the fitting uncertainty. The cooperativity of the flagellar motor switching behavior, H, was set at
10. Black line is a model fit in the form of a∕N þ b. (Inset) The effect of varying H on the ETA. The receptor cluster size, N, was set at six. (C) The estimated
receptor cluster size N as a function of the step-up stimulus. N was estimated from the experimentally measured ETA (Fig. 3E), using the theoretical relation
between ETA and N (as shown in B). Error bars designate the experimental standard error. (D) Numerical simulation of the effect of FliM remodeling on
adaptation kinetics. (Top) A step-up stimulus of 100 μM L-aspartate was given t ¼ 0. (Middle) With FliM remodeling incorporated into the simulation, the
number of FliM units changes upon application of the stimulus (red solid line). The black dashed line shows the case of no FliM remodeling. (Bottom) Motor
bias displays a more abrupt adaptation, and an overshoot, in the presence of FliM remodeling (red solid line) compared to the absence of FliM remodeling
(black dashed line). For details of the numerical simulations see SI Materials and Methods.
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