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In the following, we present a detailed description of the theore-
tical treatment of the spontaneous emission coupling efficiency
(the β factor) used in the main text. We start by deriving a general
expression for the β factor for the class of structures considered in
our work. Within the Wigner–Weisskopf approximation (1), the
rate of spontaneous emission Γ of a two-level quantum emitter
embedded in a complex electromagnetic (EM) environment
can be described by Fermi’s golden rule (2, 3)

Γ ¼ πd2ωs

ℏϵ0
ρðrs; d̂; ωsÞ [S1]

where d ¼ dd̂ is the dipolar moment associated to the radiative
transition of the emitter. Here ωs is the frequency of that tran-
sition, whereas ϵ0 and ℏ are the vacuum permittivity and the re-
duced Planck’s constant, respectively. The scalar function
ρðr; d̂; ωÞ represents the photonic local density of states (LDOS)
accessible to the emitter at position r ¼ rs.

On the other hand, in the case of a nondissipative system, in
which the electric field can be expanded in terms of a complete
basis of transverse orthonormal modes fEmðrÞg of frequencies
fωmg, the LDOS can be expressed as (3–5)

ρðr; d̂; ωÞ ¼ ∑
m

δðω − ωmÞϵðrÞjd̂ · EmðrÞj2 [S2]

where ϵðrÞ is the position dependent dielectric constant charac-
terizing the system. Each of the modes in Eq. S2 satisfies the fol-
lowing orthonormality condition

Z
drϵðrÞEmðrÞE�

nðrÞ ¼ δmn [S3]

with δnm standing for the Kronecker’s delta. The transversality
condition reads

∇ · ½ϵðrÞEmðrÞ� ¼ 0 [S4]

Note also that each mode profile EmðrÞ can be obtained by sol-
ving the following wave equation

∇ × ½∇ × EmðrÞ� ¼ μ0ϵðrÞω2
mEmðrÞ [S5]

where μ0 is the vacuum permeability.
Now, by definition, the β-factor can be calculated as

β ¼ Γt∕Γall, where Γt is the spontaneous emission rate into a given
targeted mode (often a laser mode) and Γall is the total sponta-
neous emission rate into all the modes of the system (including
the targeted one) (6). Thus, assuming that the lineshape of the
emission transition is defined by function gðωÞ, by inserting Eq. S2
into Eq. S1 and integrating the resulting expression over ω, we
obtain the following expression for Γall, corresponding to an emit-
ter located at r ¼ rs

Γall ¼
πd2ϵðrÞ
ℏϵ0

Z
dωgðωÞωf ðω; rsÞ [S6]

where function f ðω; rÞ is defined as

f ðω; rÞ ¼ ∑
m

δðω − ωmÞjd̂ · EmðrÞj2: [S7]

Eqs. S6 and S7 summarize well the physical origin of the total
spontaneous emission decay in the considered system: On the
one hand, the different terms in the summand of Eq. S7 account
for the different modes in which a single frequency component
ω of considered emission transition can decay to. On the other
hand, the integral in ω appearing in Eq. S6 accounts for the
continuous sum of these possible radiative decay paths for all fre-
quency components of the emission transition. Note that, as ex-
pected, the lineshape of the emission, gðωÞ, acts as a frequency
dependent weight in this sum. The additional factor ωmultiplying
gðωÞ in the integral of Eq. S6 comes just from the proportionality
factor that links the spontaneous emission rate and the LDOS
(see Eq. S1).

This physical picture of the decay process also allows us to ob-
tain an expression for Γt simply by singling out the contribution to
Γall that stems from the considered targeted mode. In particular,
if we define EtðrÞ and ωt to be the targeted electric-field profile
and its corresponding frequency, respectively, the magnitude of
Γt can be obtained by substituting gðωÞ by gtðωÞ ≡ δðω − ωtÞ in
Eq. S7 and by replacing f ðω; rsÞ by f tðω; rÞ ≡ δðω − ωtÞj
d̂ · EtðrÞj2. This yields

Γt ¼
πd2ϵðrsÞ

ℏϵ0
ωtgðωtÞjd̂ · EtðrsÞj2: [S8]

Note that dividing Eq. S8 by Eq. S6, and using the definition of
the LDOS given in Eq. S2, we recover Eq. 2 of the main text.

We now focus on the application of the above formalism to
calculate the β factor in the case in which the emitter is embedded
in a three-dimensional photonic crystal (PhC). We assume that
the considered PhC is characterized by a finite volume V ¼ Lx ×
Ly × Lz (where Lx; Ly; Lz are the dimensions of the PhC along
the x, y, and z axis, respectively). Here we emphasize that in our
theoretical calculations, this three-dimensional analysis is applied
to the homogeneous and band-edge cases discussed in the main
text. (The homogeneous case can be trivially considered as a per-
iodic system with an arbitray periodicity). For the Dirac case,
however, due to the out-of-plane subwavelength confinement
of the EM fields introduced by the full photonic band gap, the
analysis is performed in terms of the in-plane transverse area
of the system, A ¼ Lx × Ly (see discussion in the main text).

To analyze the finite-size effects on the β-factor, without loss of
generality, we assume the volumeV (or transversal areaA for the
Dirac case) to be surrounded by Born–von Karman boundary
conditions [i.e., periodic boundary conditions (7); our theoretical
analysis admits a straightforward generalization to other types of
boundary conditions]. In this case, the index m used above to
label the modes can be identified with fn; k; σg, where n is
the band index, k is the wavevector of each Bloch mode [k lies
inside the first Brillouin zone (FBZ)] and σ labels the polarization
(σ ¼ 1 and σ ¼ 2, for s and p polarization, respectively). In addi-
tion, because the system is finite, k can only take discrete values:
k ¼ 2π × ðnx∕Lx; ny∕Ly; nz∕LzÞ for the homogeneous and band-
edge cases, and k ¼ 2π × ðnx∕Lx; ny∕Ly; 0Þ for the Dirac case (in
all three cases, nx, ny, and nz are arbitrary integers). Thus, once
the normal modes of the system En;k;σ are computed (for which
we have used the plane-wave expansion method to Maxwell’s
equations (8), from Eqs. S6 and S8 the β factor can be calculated
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using

β ¼ ωtgðωtÞjEtðrÞ · d̂j2R
dωgðωÞωfΣn;k;σδðω − ωn;k;σÞjEn;k;σðrÞ · d̂j2g

: [S9]

In the limit in which the volume V of the system is such that
V ≫ λ3 (or equivalently, for the Dirac case, when the area A is
such that A ≫ λ2), with λ being the central emission wavelength,
semianalytical expressions for the β-factor can be obtained by
assuming a continuous distribution of k vectors over the FBZ.
Specifically, we can replace Σk → V∕ð2πÞ3∫ FBZdk in the homo-
geneous and band-edge cases, and Σk → A∕ð2πÞ2∫ FBZdk in the
Dirac case (note that in all three cases the integral over k is per-
formed over the whole FBZ) . Then, if we expand the argument
of the Dirac delta appearing in the denominator of the right-hand
side of Eq. S9) using

ω − ωn;σðk0Þ ¼∇ k0ω½k0 − k0ðωn;σÞ� þOðjk0 − k0ðωn;σÞj2Þ
[S10]

and neglect the contribution of second order terms in
jk0 − k0ðωn;σÞj (6), after some straightforward algebra, one finds
that Eq. S9 can be rewritten as

β ¼ 1

V
ωsgðωsÞR

dωgðωÞω ~ρðωÞ [S11]

where the function ~ρðωÞ determines the total density of photonic
states per unit volume in the structure. Note that in the Dirac
case, V must be replaced by the transversal area A. In analogy
with standard analyses in solid-state physics (6), in the homoge-
neous and band-edge cases, ~ρðωÞ can be expressed as

~ρðωÞ ¼ 1

ð2πÞ3
Z
AðωsÞ

1

vg
dkt [S12]

where AðωsÞ denotes the equifrequency surface ω ¼ ωs, and vg is
the magnitude of the group velocity vg ¼ jdω∕dkj. At each point

of the equifrequency surface, kt stands for the component of the
3D vector k that lies along the tangential direction to AðωsÞ at
each point of the k-space. In the Dirac case a similar expression
holds for ~ρðωÞ, but now the domain of integration in Eq. S12 is a
equifrequency curve instead of equifrequency surface. The result-
ing expressions ~ρðωÞ, obtained by performing the integral defined
by Eq. S12 for the different dispersion relations considered in this
work, are discussed in detail in the main text.

Importantly, in deriving Eq. S11 we have assumed that for the
range of parameters considered in this work, the emission band-
width is narrow enough so that jEnkσðrÞj2 ≈ jEtðrÞj2 for all modes
whose equifrequencies ωnkσ lie inside the interval where gðωÞ is
not negligible. To verify numerically the accuracy of this approx-
imation in the Dirac case (a similar analysis holds for the band-
edge case), we have probed directly the LDOS of the 2D counter-
part of the defect layer structure shown in Fig. 1A of the main
text. Specifically, in order to do that, we have computed the
power radiated by a dipole placed in the low-refractive index
regions of the structure (i.e., in the interstitial regions among
cylinders), Poutðr; d̂; ωÞ. To compute Poutðr; d̂; ωÞ we have em-
ployed a generalization of the conventional coupled-mode theory
(9), in which each Bloch mode is considered as an independent
input/output channel (see details in ref. 10). The computed
results are summarized in Fig. S1, in which band structure calcu-
lations (Fig. S1A) are displayed together with the corresponding
dependence of Poutðr; d̂; ωÞ with frequency (Fig. S1B). As ob-
served in these results, the dependence of Poutðr; d̂; ωÞ with
ω near the Dirac frequency ωD [and hence the LDOS (11)], ob-
tained by assuming jEnkσðrÞj2 ≈ jEsðrÞj2, is in good agreement
with full numerical calculations within a moderately large band-
width of frequencies (see comparison between cyan line and blue
line in the bottom inset of Fig. S1B). Finally, we note that
although in the particular case considered in Fig. S1B the dipole
has been placed at the center of the unit cell of the triangular
lattice, with d̂ pointing along the x direction (see top inset of
Fig. S1B), we have checked that similar good agreement between
numerical and and semianalytical results is obtained for other
positions of the dipole in the unit cell, as well as for other orienta-
tions of d̂.
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Fig. S1. (A) Numerical calculation of two-dimensional photonic bands displaying an isolated Dirac point. The analyzed system is formed by a triangular lattice
of dielectric cylinders of refractive index nd ¼ 3.1 and radius rd ¼ 0.32a (a being the lattice constant) embedded in air. (B) Power emitted by a dipole located at
the center of the unit cell of the considered photonic crystal and with its dipolar moment pointing along the x axis (see sketch in top inset of this panel). In both
panels, ωD marks the frequency of the Dirac point. Bottom inset in B shows the comparison between the predictions of semianalytical and full numerical
calculations (cyan and blue lines, respectively) for the emitted power.
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