Supported the 1997 (see 1995 796490) Naseer et al. 10.1073/pnas.1205726109

AS PNAS

Fig. S1. Casparian strip detection with additional dyes. (A) Dot-like appearance of Casparian strips as visualized by Berberine hemisulfate staining. (B) Phloroglucinol staining and (C) Fuchsine staining. Stele (st), endodermis (en), cortex (ct), epidermis (ep). n = 16 (Scale bars: A and B, 20 μm; C, 50 μm.)

Fig. S2. Comparison of onset of ALIPHATIC SUBERIN FERULOYL TRANSFERASE (ASFT) and GPAT5 promoter activities. (A) ASFT::NLS-GFP-GUS: beginning of promoter activity in the elongation zone (green arrowhead) before establishment of a functional diffusion barrier, as visualized with propidium iodide (PI, white arrowhead). (B) GPAT5::NLS-GFP-GUS: beginning of activity late in the differentiated zone (green arrowhead), appears long after establishment of the diffusion barrier (white arrowhead). $n = 10$. (Scale bars, 100 µm.)

AS PNAS

Fig. S3. Additional suberin biosynthetic mutants delay in suberin lamellae formation without affecting Casparian strips. (A) Fluorol yellow staining shows the significant delay in the formation of suberin lamellae; first signal was observed at around 44.5 endodermal cells after the onset of elongation in wild-type (wt), 59 endodermal cells in gpat5-1, 61 endodermal cells in far1-2, and 61 endodermal cells in the far5-2 mutant. (B) Autofluorescence after clearing shows that both both insertion mutants do no significantly affect the appearance of Casparian strips, compared with wild-type. (C) PI staining shows no effect on the establishment of functional difussion barrier in both insertion mutants and wt (n = 16). "Onset of elongation" was defined as the zone where an endodermal cells was clearly more than twice its width.

 \overline{A}

Fig. S4. Inducible suberin degradation does not affect formation of Casparian strips or diffusion barrier establishment. (A and B) Fluorol yellow staining reveals presence of suberin lamellae formation in the untreated seedling (−Dex), whereas no staining is observed in seedlings treated with 10 μM dexamethasone (+Dex). (C and D) Autofluorescence shows no effect on the formation of Casparian strips in both −Dex and +Dex seedlings. (E and F) PI shows that suberin degradation does not affect formation of a diffusion barrier in both −Dex and +Dex-treated seedlings. Stele (st), endodermis (en), cortex (ct), epidermis (ep). $n = 20$ (Scale bars: A and B, 100 μ m; C-F, 20 μ m.)

Fig. S5. Piperonylic acid (PA) significantly lowers overall lignin contents in young seedling roots. Quantitative analysis shows significant difference in the total amount of lignin extracted from 5-d-old seedling roots treated with 10 μM PA for 24 h compared with the control (untreated) samples.

PNAS

 λS

Fig. S6. Interference with lignin biosynthesis affects Casparian strip formation, but not suberin lamellae. (A and B) Quantification of seedling treated with two different lignin biosynthesis inhibitors (10 μM PA and 50 μM 2-aminoindan-2-phosphonic acid, AIP) blocks the appearance of green autofluorescent signal and of PI uptake in the newly formed cells, compared with control seedlings. However, suberin lamellae formation was not affected by the inhibitors. (C) Genetic interference using triple insertion mutants (ccr1;cad4;cad5) of lignin biosynthetic genes reveals a delay in the formation of the diffusion barrier, visualized by PI. In a population of double homozygote (cad4;cad5), segregating for ccr1, a delay in the formation of the diffusion barrier is observed in the double mutant, which is further increased in the triple mutant. Wild-type (Co/): $n = 60$ and Wassilewskija (Ws), double mutant (cad5;ccr1 with CAD4 either CAD4/CAD4 or CAD4/cad4): n = 82 and the triple mutant (cad5;ccr1;cad4): n = 30. Data of autofluorescence and PI in A the same as in Fig. 4 D and H.

SVNAS

Fig. S7. Exogenous treatment with only coniferyl alcohol can lead to Casparian strip formation in lignin inhibitor-treated roots. (A) Autofluorescence after clearing shows the dot-like appearance of Casparian strips in control seedlings. (B) Block of Casparian strip formation in the PA-treated seedling. (C) Formation of functional Casparian strips by exogenous application of 20 μM coniferyl alcohol. (D) Formation of Casparian strips by exogenous application of 20 μM of sinapyl alcohol. (E) PI staining shows block of PI uptake in untreated (control) seedling. (F) Penetration of PI in the seedling treated with PA. (G) Establishment of functional diffusion barrier because of the complementation of the inhibitor-induced defect with coniferyl-alcohol. (H) Sinapyl-alcohol is less functional in the formation of a functional diffusion barrier than coniferyl alcohol. Stele (st), endodermis (en), cortex (ct), epidermis (ep). n = 20 roots counted. (Scale bars, 20 μm.)

Primer name	Primer sequence
horst-1-LP	AAGAACCAGCTCAAGGCCACC
horst-1-RP	AGCAAAAAGCCTAAACCGGGA
horst-3-LP	AGGTAGCAACATCTGCTTCCC
horst-3-RP	ACCAGGATTTCAAATACGTCG
gpat5-1-LP	TTGGTTACTATATGCTCCTATTTTGG
qpat5-1-RP	TTCGGACAAATGGTGAATTTC
far 1-2 -LP	TTGTTGCAATAAATGAAATGAACAG
far 1-2 -RP	TACCTTGCACGACTATGTCCC
far 5-2-LP	TTCTTGCAACGTCCTTAGCTG
far 5-2-RP	AAAGGTGGTATATAAAAATTTCTTGTAGC
$cr1-IP$	CCGTAACAATACCAATTCTACAAAAC
ccr1-RP	TTTTATTGTTTTGATTGACAATTTGG
f5h1-I P	ATGTCGGATTCTTCAACTCGTCTGTCA
<i>f5h1-</i> RP	GGCTTCAGTTCGTGATGAAGTGGAC
<i>f5h2-LP</i>	TATGTGGGAGTCGTGAAATTTATATG
f5h2-RP	AACTCACCAAAGAGCTTAGAGAACTC
cad4-LP	GCTCAGAACTTGAGCAGTATTGTAAC
cad4-RP	TTAACAAATTTGAGTTCAAGTGGAAG
cad4-ccc -LP	GCCACCTTGAGTAGGTTTTCC
cad4-ccc -RP	CTGCAAGAGATCCTTCTGGTG
cad5-LP	AATACACACACATAAACAGCAAAAGC
cad5-RP	CTCTCTTCTTGTTTGATGAGCTTATG
cad5-ccc -LP	GATCTTGCAATGCCTCTTCTC
cad5-ccc -RP	GAAGTAGTGGAGGTGGGATCA
I Bh1	ATTTTGCCGATTTCGGAAC
GABI-LB	ATATTGACCATCATACTCATTGC
Versailles-LB	CTACAAATTGCCTTTTCTTATCGAC

Table S1. Sequences of primers used for genotyping

PNN4S

 $\tilde{\mathbf{A}}$

Table S2. Details of knock-out mutants associated with suberin biosynthesis

1. Hofer R, et al. (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59(9):2347-2360.

2. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19(1): 351–368.

3. Domergue F, et al. (2010) Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153(4):1539–1554.

4. Ruel K, et al. (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184(1):99–113.

5. Huang J, et al. (2009) Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230(5):1057–1069.

6. Sibout R, et al. (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132(2):848–860.

7. Kim SJ, et al. (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101(6):1455–1460.

Table S3. Primer sequences used for construction of promoter::GUS fusions

SVNG PNS

For construction of transgenic line expressing CDEF1 (At4g30140), Gateway Directional TOPOentry vector(U15010) was used (Invitrogen). Fragments of entry clones were transferred into the destination vector pB7m34GW.