
Text S1: Uniform Normalization

Normalization

Microarray technologies provide a powerful mechanism to simultaneously detect and mea-

sure expression levels for tens of thoudands of genes in a single experiment. The vast

quantity of data if suitably analyzed can help in understanding cellular processes, diagno-

sis of diseases and development of potential therapeutic targets. The effective analysis of

the experimental results rely on the good quality of data. Experimental variations such as

design of arrays, mRNA quality,labellings and dye effects, hybridization conditions, human

and machine errors in scanning process contribute toward obscuring variations found in a

Microarray data. To overcome these obscure variations, and make the observations from

different array comparable, an effective normalization technique is required. A number of

normalization methods have been proposed over the years but it is still an active field for

research. While studying different normalization techniques one often comes across the

assumption that various sources of biases in a microarray experiment are either completely

confounded by each other or are orthogonal to each other.Confounded effects mean, one

effect is estimable only when the other effect is zeros, whereas orthogonality of effects

results in a scenario where including or excluding one effect in the model does not alter

the estimates obtained for other effects. Global normalization methods also assume that

the various biases are same across the experimental setup. To accommodate these idea

in the mathematical framework, different biases are constrained to have zero mean value

across microarray species population and replicates. While these constraints are important

to obtain estimates and reason well with a carefully designed experiment, they are global in

nature. If we concentrate on a local population in a experiment, these constraints may not

hold together, and normalizing a local population can result in several concerns. One of the

concerns being the presence of strong correlation among various species within a replicate

and across the replicates, and the non-normal behaviour of residual terms. In this paper, we

present a method to normalize global as well as local population of data by handling the

correlation between species and replicates while controlling the variances and also correct-

ing the residuals for normal behaviour.



Let Ygbi be the log of observed gene expression for gene g, on biological sample b,

measured on the replicate i. The reason to analyse the data value based on log scale is

due to the fact that log transform is the natural method for analysing data with an additive

model where the effects in the data are believed to be multiplicative. the common use of

ratios to analyse microarray data also illustrates this assumption. To account for multiple

sources of variations in a microarray experiment, consider the following model

Ygbi = αg + βb + γbi +Mgbi + ζgbi (1)

where αg is the assumed true value of the gene expression, βb is the systematic variation

associated with each biological sample,γbi is the systematic variation associated with the

replicate i for the biological sample b. Mgbi is the gene-specific effects of dyes, selection

bias and other experimental conditions. Finally, ζgbi is the error term in the model. Our

goal is to a) estimate all the above factors of variations, b) estimate the error term ζgbi such

that it is independent and identically distributed with mean zero and constant variance and

c) the error terms are least correlated across replicates. Here we assume that each gene is

spotted only once on each array and the replicates include both biological and experimental

replicates.

For simplicity, the model in Equation 1 can be expressed as

Ygbi = αg + βb + γbi + εgbi (2)

where

εgbi = Mgbi + ζgbi (3)

For the further derivation, we fix g = 1, 2, . . . , G, b = 1, 2, . . . , B and i = 1, 2, . . . , I

associated with each b. We first present the following steps for estimation of γbi, βb and αg,

and later we show how to process εgbi to achieve desired goals.

With each biological sample b and the replicate i associated with it, the average gene
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expression for a gene g can be obtained as

Y gb =
1

I

I∑
i=1

Ygbi (4)

The bias associated with each replicate i for a given b can be obtained by removing the

effect of average gene expression Y gb from each Ygbi. Thus

Ygbi − Y gb = αg + βb + γbi − αg − βb −
1

I

I∑
i=1

γbi + ε′gbi (5)

Using the Least-square estimates, the systematic variation γbi can be estimated as

⇒ γ̂bi =
1

G

G∑
g=1

(Ygbi − Y gb) (6)

To estimate the variation βb among biological samples we first remove the variation γ̂bi

from the log of observed gene expression. Let

Y ′gbi = Ygbi − γ̂bi

hence according to our model in Equation 1

Y ′gbi = αg + βb + εgbi

Now for each b we have

Y ′′gbi = Y ′gbi − Y gi

where Y gi is the average gene expression for a given replicate i across all the biological

samples b = 1, 2, . . . , B.

Y ′′gbi = αg + βb − [αg +
1

B

B∑
b=1

βb] + ε′′gbi

The values for β̂b for b = 1, 2, . . . , B can be estimated using Least-squares and by

averaging over all the genes g = 1, 2, . . . , G. In the next step, we can remove the biological
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variation βb and the combined effect of variation of biological sample b and replicate i

captured in γ̂bi from the Ygbi to estimate the expected value of the gene expression αg.

Y ′′′gbi = Ygbi − αg − β̂b − γ̂bi = αg + εgbi

α̂g =
1

B × I
∑
b,i

Y ′′′gbi (7)

After estimating α̂g, β̂b and γ̂bi, we can compute ˆεgbi from our model in Equation 2 as

ˆεgbi = Ygbi − α̂g − β̂b − γ̂bi (8)

In our model βb and γbi are variations specific to biological samples and replicates. But

there may be many other sources of variations in an experiment which may be confounded

in various combinations and are captured in the expression εgbi which is specific to each

gene, biological sample and replicate. In the ideal conditions, εgbi should be independent

and identically distributed and should be uncorrelated across replicates. But this seldom is

the case because of presence of many other unknown sources of experimental variations in

a dataset. Thus εgbi demands a separate analysis and treatment.

Recall that according to Equation 3, εgbi is composed of Mgbi and ζgbi which can be

calculated separately. Consider a G × R matrix E having values of εgbi. G is the total

number of genes and R are the total replicates present in the experiment. Let X be the

I × I correlation matrix of E. In order to remove high degree of correlation among the

values in E across different columns (corresponding to different replicates), we can apply

an iterative procedure where the εgbi values for each replicate i denoted as the Ei column

can be represented as a linear combination of highly correlated columns selected from the

rest of the columns in E. The least correlated column can be decided by looking at the

entries in the correlation matrix X . So in the beginning of the iteration,we denote

Ei = ΣSkEk + ζi

where k 6= i, j We compute the Sk coefficient and ζi with Least-square method and com-

pute a correlation matrix of Ei with the Ek columns. We terminate the iteration if we
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find all the correlation coefficients of Ei with the Ek columns to be less than 0.1, or if the

variance of ζi has stabilised, or all the columns but one is remaining from the set of Ek

columns. Otherwise, we drop a least correlated column from Ek columns and iterate the

process till the termination criteria is met. In the end, we store ΣSkEk as Mgbi and ζi as

ζgbi to be introduced in the Equation 1.

Upon inspection of the results, we found that though the correlation among replicates

drop significantly, but there is presence of more negatively correlated ζgbi terms compared

to positively correlated ones. In order to deal with the skewness in the correlation terms,

we distribute the correlation in system equally among all the replicates. Assuming ζgbi as

ζgbi = ζgbi − alζgbi + alζgbi

and further

θgbi = ζgbi − alζgbi

So

ζgbi = θgbi + alζgbi (9)

θgbi is the white noise element. By denoting the matrices having θgbi elements as θ, ai

elements as A and ζgbi matrix as ζ we have,

ζ = θ + Aζ (10)

The correlation matrix (ρ) of θ across all the replicates R has approximately the same

correlation coefficient

ρ =


1 −1

R−1
. . .

−1
R−1

1 . . .
...

... . . .


The unknown matrix A can be computed from Equation 10 where

θ = (I − A)ζ

Denoting the covariance matrix of θ and ζ as Σθ and Σζ respectively, we have

A = I −
√

(Σθ)(
√

(Σζ))
−1 (11)
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So eventually,the final model in terms of Equation 1, after removing all the effects

of variations and further breaking the error terms ζgbj in a way to equally distribute the

remaining correlation in the system, can be expressed as

Ygbi = αg + θgbi (12)

Correlation coefficients of residuals

1 0.16 -0.06 -0.03 -0.06 -0.14 -0.29 0.06 -0.11 0.41 0.10 -0.00 -0.10 0.12 -0.19 -0.03

0.16 1 0.07 -0.09 -0.06 -0.07 -0.00 -0.13 -0.16 -0.03 0.014 -0.03 -0.07 -0.11 -0.23 -0.15

-0.06 0.07 1 0.00 -0.12 -0.09 0.02 0.06 -0.07 0.00 -0.09 0.05 -0.01 -0.11 -0.44 0.00

-0.03 -0.09 0.00 1 0.06 -0.20 -0.01 -0.09 -0.00 -0.02 -0.09 -0.20 0.22 0.07 0.21 -0.03

-0.06 -0.06 -0.12 0.06 1 0.08 -0.42 -0.08 -0.05 -0.16 0.00 -0.069 -0.04 -0.07 -0.21 -0.11

-0.14 -0.07 -0.09 -0.20 0.08 1 0.04 0.10 -0.14 -0.18 -0.05 -0.13 -0.14 -0.50 0.00 -0.18

-0.29 -0.00 0.02 -0.01 -0.42 0.04 1 0.02 -0.12 -0.14 0.05 -0.19 0.03 -0.11 0.11 0.03

0.06 -0.13 0.06 -0.09 -0.08 0.10 0.02 1 -0.24 -0.10 -0.12 -0.09 -0.20 -0.00 -0.09 0.00

-0.11 -0.16 -0.07 -0.00 -0.05 -0.14 -0.12 -0.24 1 -0.06 -0.00 -0.09 0.07 -0.12 0.00 0.00

0.41 -0.03 0.00 -0.02 -0.16 -0.18 -0.14 -0.10 -0.06 1 -0.16 0.22 -0.09 0.01 -0.18 -0.09

0.10 0.01 -0.09 -0.09 0.00 -0.05 0.05 -0.12 -0.00 -0.16 1 -0.03 0.09 -0.09 -0.04 -0.08

-0.00 -0.03 0.05 -0.20 -0.06 -0.13 -0.19 -0.09 -0.09 0.22 -0.03 1 0.01 -0.08 -0.23 -0.13

-0.10 -0.07 -0.01 0.22 -0.04 -0.14 0.03 -0.20 0.07 -0.09 0.09 0.01 1 -0.08 -0.06 -0.08

0.12 -0.11 -0.11 0.07 -0.07 -0.50 -0.11 -0.00 -0.12 0.01 -0.09 -0.08 -0.08 1 0.00 0.04

-0.19 -0.23 -0.44 0.21 -0.21 0.00 0.11 -0.09 0.00 -0.18 -0.04 -0.23 -0.06 0.00 1 0.12

-0.03 -0.15 0.00 -0.03 -0.11 -0.18 0.03 0.00 0.00 -0.09 -0.08 -0.13 -0.08 0.04 0.12 1

Table 1: Correlation coefficients across replicates for ζgbi

1 -0.062 -0.063 -0.106 -0.049 -0.045 -0.063 -0.070 -0.059 -0.068 -0.088 -0.062 -0.077 -0.040 -0.049 -0.077

-0.062 1 -0.067 -0.060 -0.070 -0.072 -0.067 -0.066 -0.068 -0.066 -0.062 -0.067 -0.064 -0.073 -0.070 -0.064

-0.063 -0.067 1 -0.063 -0.069 -0.070 -0.067 -0.066 -0.067 -0.066 -0.064 -0.067 -0.065 -0.071 -0.069 -0.065

-0.106 -0.060 -0.063 1 -0.042 -0.036 -0.063 -0.072 -0.057 -0.069 -0.097 -0.061 -0.082 -0.030 -0.043 -0.082

-0.049 -0.070 -0.069 -0.042 1 -0.083 -0.069 -0.065 -0.072 -0.066 -0.053 -0.070 -0.060 -0.087 -0.079 -0.060

-0.045 -0.072 -0.070 -0.036 -0.083 1 -0.070 -0.064 -0.074 -0.066 -0.050 -0.071 -0.059 -0.092 -0.083 -0.059

-0.063 -0.067 -0.067 -0.063 -0.069 -0.070 1 -0.066 -0.067 -0.066 -0.064 -0.067 -0.065 -0.071 -0.069 -0.065

-0.070 -0.066 -0.066 -0.072 -0.065 -0.064 -0.066 1 -0.065 -0.066 -0.069 -0.066 -0.067 -0.064 -0.065 -0.067

-0.059 -0.068 -0.067 -0.057 -0.072 -0.074 -0.067 -0.065 1 -0.066 -0.061 -0.068 -0.063 -0.076 -0.072 -0.063

-0.068 -0.066 -0.066 -0.069 -0.066 -0.066 -0.066 -0.066 -0.066 1 -0.067 -0.066 -0.067 -0.066 -0.066 -0.067

-0.088 -0.062 -0.064 -0.097 -0.053 -0.050 -0.064 -0.069 -0.061 -0.067 1 -0.063 -0.074 -0.046 -0.053 -0.074

-0.062 -0.067 -0.067 -0.061 -0.070 -0.071 -0.067 -0.066 -0.068 -0.066 -0.063 1 -0.064 -0.072 -0.070 -0.064

-0.077 -0.064 -0.065 -0.082 -0.060 -0.059 -0.065 -0.067 -0.063 -0.067 -0.074 -0.064 1 -0.057 -0.060 -0.070

-0.040 -0.073 -0.071 -0.030 -0.087 -0.092 -0.071 -0.064 -0.076 -0.066 -0.046 -0.072 -0.057 1 -0.086 -0.057

-0.049 -0.070 -0.069 -0.043 -0.079 -0.083 -0.069 -0.065 -0.072 -0.066 -0.053 -0.070 -0.060 -0.086 1 -0.060

-0.077 -0.064 -0.065 -0.082 -0.060 -0.059 -0.065 -0.067 -0.063 -0.067 -0.074 -0.064 -0.070 -0.057 -0.060 1

Table 2: Correlation coefficients across replicates for θgbi
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