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SI Text
In the following we endeavor to provide some technical details on
the RG analysis discussed in the main text. A complete presenta-
tion will appear in a forthcoming technical paper.

The starting point of our approach is the replica mean field
theory of structural glasses, in which one studies the distribution
of putative metastable glassy states by introducing m − 1 copies
(or replicas) of the same liquid system coupled with a small at-
tractive interaction whose amplitude is set to zero after taking the
thermodynamic limit (1, 2). By keeping the leading terms in the
local order parameter, which is the similarity or “overlap” be-
tween different states, one obtains the following Ginzburg-Land-
au functional (3, 4)
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where q denotes the set of elements fqabg (by construction,
qaa ¼ 0) and the overlap qabðxÞ is physically associated with a lo-
cal Debye-Waller factor characterizing molecular motion in the
glass-forming liquid (3, 4). a0 is the microscopic length scale cor-
responding to the first peak in the radial distribution function
(henceforth we shall put a0 ¼ 1 and measure lengths in unit of
a0). For simplicity, the only temperature dependence is taken
in t ¼ T−T0

T0
, with T0 setting the temperature scale, while u; w; y >

0 are considered as independent of temperature. This “real re-
plica” method allows one to obtain the properties of the meta-
stable states from the knowledge of the replica partition
function,

ZðmÞ ¼
Z Y
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DqabðxÞ expð−S½q�Þ: [S3]

The mean free energy of a typical equilibrium state and the cor-
responding configurational entropy respectively read βF ¼
−∂ logZðmÞ∕∂m and Sc ¼ −m2∂ðlogZðmÞ∕mÞ∕∂m. The num-
berm of replicas should be analytically continued to 1 in the equi-
librium liquid phase and to a value less than one in the ideal glass
phase (2). At the mean field level; i.e., by looking for the uniform
saddle-points of Eq. S1, one finds that the order parameter qab is
zero above a temperature Td, such that td ¼ w2

4y , and that below
Td appears another uniform solution with a replica symmetric
(RS) structure qab ¼ qEA > 0 for a ≠ b. By explicitly using the
RS structure of qab one finds that qEA is the secondary local mini-
mum of ~V ðqÞ ¼ V ðqÞ

m−1 jm¼1 and that the configurational entropy per
unit volume is ~V ðqEAÞ. Finally, at a temperature TK such that
tK ¼ 2w2

9y , there is a random first order transition with a coexis-
tence between a zero-overlap phase and a high-overlap one, tran-
sition with zero latent heat and vanishing configurational entropy
density. Below TK , the system is in an ideal glass phase charac-
terized by a nonzero overlap matrix and a value of m less than 1.

The effect of freezing a fraction f of particles is thoroughly
studied within mean field theory for the REM case in the main

text. A more refined analysis is obtained focusing on the p-spin
spherical model and will be discussed in detail elsewhere in a
forthcoming paper. In the following, in order to go beyond the
mean field analysis, we focus on the replica field theory. Pinning
particles at random can be schematically represented in the field
theory by forcing the overlap between replica to be equal to qEA
at a set of points associated with frozen particles. In reality, the
effect is more complicated than that but this is irrelevant as far as
the large length scale properties are concerned. Thus, we impose
to the measure in [S3] the constraints qabðxÞ ¼ qEA in a random
set of Poisson-distributed points characterized by a density fρ,
where ρ is the particle density.

In order to go beyond the mean field analysis discussed in the
previous section and study the critical properties of the glass tran-
sitions obtained approaching the TKðf Þ line, we follow ref. 5). We
consider a real-space Migdal Kadanoff (MK) renormalization
group (RG) approach, which becomes exact on hierarchical dia-
mond-like lattices, and apply it to a lattice version of the effective
Hamiltonian in Eq. S1. Such lattices are built iteratively by repla-
cing each bond between sites by a fixed number of new bonds
which, to mimic Euclidean d-dimensional lattices, is taken equal
to 2d. After n iterations, the volume of the system, which is equal
to the total number of original bonds, is equal to 2nd whereas the
“distance” between the boundary sites is equal to 2n bonds: this
naturally fixes the length scale after n iterations as ℓn ¼ 2n. The
procedure is illustrated in Fig. 1. The main advantage of this
RG procedure is that the renormalized effective pair interaction
on a link between two sites at the n-th step of renormalization,
W i

nðq1; q2Þ, satisfies a closed equation written in terms of the
pair interactionsW jL

n−1ðq1; q2Þ andW jR
n−1ðq1; q2Þ of the links con-

necting those sites:
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where the labels 1 and 2 denote the value of two renormalized
sites from which emanate 2nðd−1Þ original bonds, and the labels
L and R indicate the jth left and right link respectively, see
Fig. S1. At the nth iteration, the original lattice is replaced by
a renormalized one where the unit length is ℓn and the pair inter-
action between sites is W i

nðq1; q2Þ.
In this framework, freezing particles at random leads to the

requirement that in the first iterative equations corresponding
to n ¼ 1, qab is fixed equal to qEA with probability f for each given
intermediate site. In particular we only fix the constraint for the
sites in the center of the hierarchical lattice, corresponding to
n ¼ 1. The reason is that the other sites of the lattice, entering
in the RG equations for n > 1, actually correspond to renorma-
lized regions and not microscopic ones. As discussed in the fol-
lowing, the presence of these random constraints considerably
complicates the analysis because the Wn’s become random vari-
ables. In order to obtain a tractable problem we use the insight
gained in the analysis of ref. 5. Without frozen particles we have
found that the nature of the RG flow is similar to that found for
first order discontinuity fixed points. There are only two essential
couplings: the field h favoring one phase with respect to the other
and the coupling J opposing spatial variations of the order para-
meter. In our context, h and J respectively correspond to the con-
figurational entropy sc favoring the zero-overlap phase and the
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interface free-energy loss Y between a high-overlap and low-
overlap phase. Guided by this result, we repeat in the following
the analysis performed in ref. 5, “projecting” the functional
MKRG equation on simpler ones, where the matrix qab is a
two-state variable, qab ¼ 0 or qab ¼ qEA for all pairs a; b. As
in ref. 5 we focus on ~W i

nðq1; q2Þ ¼ W i
nðq1;q2Þ
m−1 jm¼1 and ~V ðqÞ, and

we approximate the full integral by a steepest-descent calculation
(see ref. 5 for a discussion of this approximation). The iteration
equation simplifies to

~W i
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q¼0;qEA

f ~W jL
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for q1 and q2 that take the values 0 and qEA only. We have chosen,
without much loss of generality, a simpler form of V ðqÞ (3, 4): by
imposing that qEA ¼ 1 at TK , one finds that

~V ðqÞ ¼ q2

2
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�
:

The initial condition is ~W
jL;R
0 ðq1; q2Þ ¼ ðq1 − q2Þ2∕2. We have

checked that the results of ref. 5 continue to hold within this ap-
proximation, as required. Because of the frozen particles, the
above equation is modified at the first stage of iteration,
n ¼ 1. For a fraction f of randomly chosen initial sites, instead
of minimizing over q, one just evaluates the expression within
brackets in [S5] for q ¼ qEA. In consequence, even though the
RG equations do not contain quenched disorder, their initial con-
ditions do. Thus, the W i

nðq1; q2Þs become random variables and
Eq. S5 defines the flow equation for their probability distri-
butions.

We have numerically solved this flow equation and character-
ized its solution. The corresponding results are discussed in the
main text. A detailed technical presentation will appear in a
forthcoming paper.
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Fig. S1. Elementary step illustrating the RG procedure on a hierachical lattice.
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