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SI Materials and Methods
Classification of Satellite Imagery to Map Land-Use and Land-Cover.
To map land-use and land-cover (LULC) classes, we used the
MODIS MOD13Q1 (16-d L3 Global 250 m) product (1, 2). The
product is a 16-d composite of the highest-quality pixels from
daily images and includes the Enhanced Vegetation Index (EVI),
red, near infrared (NIR), and midinfrared (MIR) reflectance and
pixel reliability (3). There are 23 samples available per year, with
data available from 2001 to the present. For each pixel, we cal-
culated the following statistics: mean, SD, minimum, maximum,
and range for EVI, and red NIR andMIR reflectance values from
calendar years 2001–2010. These statistics were calculated for all
12 mo (annual), two 6-mo periods, and three 4-mo periods. The
MOD13Q1 pixel reliability layer was used to remove all unreli-
able samples (value = 3) before calculating statistics.
Reference data for classifier training and accuracy assessment

were collected with human interpretation of high-resolution
imagery in Google Earth using aWeb-based tool called VIEW-IT
(Virtual Interpretation of Earth Web-Interface Tool) (2). The
VIEW-IT tool uses a GE plug-in to allow users to visually esti-
mate percent cover of LULC within a sample grid defined by a
250-m MODIS pixel overlaid on high-resolution GE satellite
imagery. GE provides high-resolution, geo-referenced imagery
from datasources, such as DigitalGlobe, GeoEye-1, IKONOS,
EarthSat, and TerraMetric, with spatial resolutions often as fine
as submeter to 4 m. Thus, GE images are similar in detail to aerial
photographs, which are a common source for accuracy assess-
ment (4) and allow a form of visual accuracy assessment. In
Central America, most imagery is from DigitalGlobe’s QuickBird
satellite, with resolutions as fine as 2.4 m to 2.8 m. Samples were
placed only in areas with high-resolution QuickBird imagery, with
locations selected both randomly and manually within patch types
for the corresponding land-cover classes (2). All samples were
more than 1,000-m apart to avoid spatial autocorrelation, which
resulted in a total of 4,560 individual training points for all of
Central America.
After point placement, at least two independent users visually

estimated percent cover of a particular LULC class to the nearest
10% and recorded the year of GE imagery. All training samples
corresponded to eight distinct classes for all years between 2001
and 2010, following definitions used in previous studies (1, 2).
Our maps were created with three separate classifiers trained on
reference data from the regional biomes (i.e., moist forest, dry
forest, and conifer forest) of Central America (5), with borders
defined by municipalities assigned to one of the three biomes
based on majority cover. For mapping purposes, municipalities
belonging to Mangroves and Desert and Xeric Shrubland biomes
(i.e., less the 1% of the total area) were subsumed into the most
dominant surrounding biome. Predictor variables were MODIS-
derived 4-, 6-, and 12-mo statistics extracted for the year corre-
sponding to the GE image year (range 2002–2010) for each
reference sample. For each biome map, a Random Forests (RF)
classifier was generated with 1,999 trees.
RFs have proved useful in classifying and detecting land-cover

and land-use elsewhere (1, 6–11). RFs are considered the cutting
edge of land-use and land-cover classification (7, 8). The RFs are
decision-tree algorithms that use bootstrap samples with re-
placement to grow a large set of classification trees (12). Pixels
are assigned to the classes that receive the most votes from the
user-specified number of classification trees. These classifiers
offer a number of advantages over more traditional classifiers,
but the most important is that they do not overfit the data (11).

This classification procedure resulted in land-change maps with
eight classes for each year from 2001 to 2010. For the purposes of
this study, only the woody vegetation (trees and shrubs that cover
greater than or equal to 80% of the pixel) and agricultural/her-
baceous (annual crop, grasslands, and pastures where cover is
greater than 80%) classes were used. We focused mainly on
trends in the woody vegetation class because it represents change
associated with natural vegetation, such as deforestation or re-
forestation, which has important implications for species habitat
use, carbon dynamics, and forest transition (FT) theory. Map
classification accuracy assessment was based on the information
obtained from reference data that were not used in training an
individual tree in the RF (1, 2, 12). The average overall accuracy
for the three biome maps that covered Central America was
85.1%. Average producer’s accuracy for the two classes under
investigation—woody vegetation and agricultural/herbaceous
vegetation—was slightly higher at 86.7% and 85.1%, respectively.
User’s accuracy was similar for the two classes at 86.7% (woody)
and 84.2% (agricultural/herbaceous vegetation).
The analysis of the trends in forest (i.e., woody vegetation) and

agriculture/herbaceousvegetationareawasdoneat themunicipality
scale. Within Central America, there are a total of 1,188 munici-
palities (Belize = 6; Costa Rica = 82; El Salvador = 264; Guate-
mala = 332; Honduras = 293; Nicaragua = 142; and Panama =
66). For each municipality, a linear regression was calculated for
either woody vegetation or agriculture/herbaceous vegetation area
(dependent variable) against time (independent variable, 10 y). If
more than 1% of the total municipality area had pixels mapped as
“No Data” for a given year, then the class area for that year was
removed from the regression. Regression models were only fit for
municipalities that had 3 or more years of valid class area data.
Absolute areas of woody vegetation and agriculture/herbaceous
vegetation were reported for 2001 and 2010 using estimates from
the linear regression model developed for each municipality.

Relating Land-Cover Change with Socioeconomic Variables. To
measure the strength of linear dependence between country level
socioeconomic variables and woody vegetation change, we used
Pearson product-moment correlation coefficients between the
country level measures and the aggregated net forest cover change
during the 10-y period. We show three measures of relative forest
cover change by dividing the area of forest cover change by country
area: (i) relative total forest change; (ii) moist forest cover; and
(iii) forest cover in dry + coniferous forests. These variables were
regressed against the following socioeconomic variables derived
from the Central Intelligence Agency World Factbook (13) using
ordinary least squares regression: country population in 2010
(POP); population change between 1990 and 2010 (PCH9010);
remittances per capita in 2009 (REM_PC); total foreign in-
vestment in 2010 (FOR_INV); foreign investment per capita in
2010 (FINV_PC); human development index (HDI) in 2010 that
combines income, education, and health subcomponents; gross
domestic product (GDP) per capita in 2010 (GDP_PC); in-
ternational migration rate in 2010 (MIGRA); percentage of urban
population in 2010 (%URBAN); urbanization rate in 2010–2015
(URRATE); infant mortality in 2010 (INFMOR); percentage of
agricultural GDP over total GDP in 2006 (AGRIC); and percent
of population below poverty line in 2010 (POVERT).
The variables included in this analysis are not intended to be all

inclusive of all correlates of woody vegetation change in Central
America; the rationale behind their inclusion is that these vari-
ables partially serve as expressions of drivers or their proxies of
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socioeconomic development and are available for all countries in
Central America. These variables tend to be highly correlated
because they are all related, to some degree, to changes in human
well being. The comparison of their correlation coefficients was
meant to assess the relative explanatory power of more integrative
variables, such as HDI, in comparison with some of its particular
components (e.g., infant mortality, GDP, poverty) and other
variables that are not explicitly included as measures of devel-
opment, but are usually related to it (e.g., percent of agriculture,
urbanization, remittances).
Given that HDI was the socioeconomic variable showing the

highest overall correlation with forest change (see Results), and its

direct significance for FT theory (Fig. 1), we explored the associ-
ation between HDI and four different measures of forest change:
(i) total relative forest change (net woody cover change over
country area); (ii) relative moist forest change [moist forest
change over the country area in the moist forest biome at the
beginning of the study (i.e., 2001]; (iii) relative dry + conifer forest
change (change in these two types of forests over 2001 cover); and
(iv) relative forest instability (absolute summation of net change in
moist forest plus dry + conifer forests). The relative forest in-
stability (forest instability index) was used to capture the level of
country-scale level of forest redistribution.
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Fig. S1. Estimated change in area of woody vegetation (km2) from 2001 to 2010 by country and by biome. Note that total forest change does not equal the
total listed in main body (5,376 km2) because of the exclusion of mangroves and deserts. Value labels indicate the total amount of woody change that occurred
from 2001 to 2010 (Upper) and the percentage of forest lost/gained in each biome that was present in 2001 (Lower).
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Fig. S2. Central America map showing biomes and woody vegetation gains and losses (km2) for 2001–2010 by municipality.
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Fig. S3. Associations of HDI with: (A) net forest change of all forest types/country area; (B) net moist forest change/country area; (C) net conifer + dry forest
change/country area; and (D) relative forest instability (absolute summation of moist forest and dry + conifer forest net change). Note that El Salvador is
missing from B because moist forest accounts for only 4.8% of total area. In C, Belize has been eliminated because it has neither dry nor coniferous forest.
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Table S1. Location of deforestation hotspots

Biome Country Department/province/district Municipalities Change (km2)

Moist broadleaf forests Nicaragua Atlántico Norte Rosita −2,314
Siuna −867
Bonanza −431
Waspam −426

Atlántico Sur La Cruz de Rio Grande −1,752
Laguna de Perlas −660
Bluefields −410
El Rama −320
Kukra Hill −261

Jinotega El Cua −367
Río San Juan El Castillo −195

Guatemala Petén San Andres −1,460
La Libertad −1,087
Sayaxche −528
Dolores −270
San Luis −266

El Quiché Ixcan −179
Alta Verapaz Coban −125

Honduras Olancho Catacamas −460
Dulce Nombre de Culmí −274

Colón Iriona −409
Limón −63

Gracias a Dios Brus Laguna −110
Belize Orange Walk −155

Stann Creek −53
Coniferous forests Nicaragua Atlántico Norte Prinzapolka −530

Puerto Cabezas −591

Redo et al. www.pnas.org/cgi/content/short/1201664109 5 of 6

www.pnas.org/cgi/content/short/1201664109


Table S2. Location of reforestation hotspots

Biome Country Department/province/district Municipalities Change (km2)

Moist broadleaf forests Costa Rica Puntarenas Golfito 192
Osa 149
Buenos Aires 127
Corredores 123

Alajuela San Ramón 110
San Carlos 100

Coniferous forests Honduras Olancho Gualaco 286
El Paraíso Danli 215
Francisco Morazán Distrito Central 142

Guaimaca 78
Lepaterique 72

El Salvador Santa Ana Santa Ana 32
Metapan 28

Cabañas Sensuntepeque 20
Victoria 15

Guatemala Quiché Chicaman 102
Nebaj 49
Uspantan 48

Baja Verapaz Cubulco 60
Dry broadleaf forests Honduras Olancho Juticalpa 101

Yoro El Progreso 39
Choluteca Pespire 39
Ocotepeque San Marcos 33

Nicaragua León El Sauce 101
La Paz Centro 65
Malpaisillo 52
Achuapa 46

Managua Mateare 93
Rivas San Juan Del Sur 71

Costa Rica Guanacaste Santa Cruz 69
La Cruz 49
Liberia 45
Carrillo 35

El Salvador San Miguel Chirilagua 21
La Union Poloros 14

San Alejo 14
Conchagua 12

Panama Coclé Anton 12
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