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Cell Proliferation Assays.Cell proliferation wasmonitored using the
BrdU incorporation assay (Cell Proliferation ELISA BrdU kit;
Roche). Cells were seeded in 96-well plates (1,000 cells per well)
and treated with drug concentrations as indicated in the text or
a vehicle for 48h.Absorbanceat 370nm(referencewavelength492
nm) was measured using a Varioskan microplate reader (Thermo
Electron Corporation). Concentration of the drug, which inhibits
proliferation by ∼50% of the control (aIC50), was determined by
dose–response curve fitting using Graph prism software.

Western Blot Analysis. Cells were cultured in 15-cm dishes and
treated with indicated concentration of drugs or a vehicle
(DMSO) for 12 h. One-tenth of the cells was used for Western
blot analysis and nine-tenths were used for polysome analysis. Cell
lysates were prepared using RIPA buffer supplemented with
phosphatase and protease inhibitors. Western blotting was car-
ried out as previously described (1). Antibodies against eukary-
otic translation initiation factor 4E-binding protein (4E-BP)1,
4E-BP2, phospho-4E-BP1 (Thr37/46 and Ser65), S6 kinase 1 and
2, phospho-S6 kinase 1 (Thr389), rpS6, phospho-rpS6 (Ser240/
244), and cyclin D3 were from Cell Signaling Technology. Other
antibodies used in this study were anti-ODC (BIOMOL), anti-
cyclin E1 and anti-cyclin E2 (Santa Cruz Biotechnology), and
anti–β-actin (AC-15; Sigma). Secondary HRP-conjugated anti-
rabbit IgG and anti-mouse IgG were from Amersham Bio-
sciences and the signals were revealed using Western Lightning
ECL Enhanced Chemiluminescence Substrate (PerkinElmer).
Densitometry was performed using ImageJ.

Polysome Preparations. Polysome profile analysis was carried out
as previously described (1). Briefly, cells were cultured in 15-cm
dishes and treated with indicated concentration of drugs or a
vehicle (DMSO) for 12 h, washed with cold PBS containing 100
μg/mL cycloheximide, collected, and lysed in a hypotonic lysis
buffer [5 mM Tris-HCl (pH 7.5), 2.5 mM MgCl2, 1.5 mM KCl,
100 μg/mL cycloheximide, 2 mM DTT, 0.5% Triton X-100, and
0.5% sodium deoxycholate]. A sample was collected from the
lysate and cytoplamsic RNA was isolated using TRIzol (In-
vitrogen). Lysates were loaded onto 10–50% (wt/vol) sucrose
density gradients [20 mM Hepes-KOH (pH 7.6), 100 mM KCl, 5
mM MgCl2] and centrifuged at 36,000 rpm [SW 40 Ti rotor
(Beckman Coulter, Inc.)] for 2 h at 4 °C. Gradients were frac-
tionated and the optical density at 254 nm was continuously
recorded using an ISCO fractionator (Teledyne ISCO). RNA
from each fraction was isolated using TRIzol (Invitrogen).
Fractions with mRNA associated with >3 ribosomes were pooled
(polysome-associated mRNA).

Data Analysis. For analysis of microarray data, we extracted and
normalized data using robust mutiarray averaging implemented
in the R package “affy” (www.r-project.org). We used updated
probe set definitions because these provide improved precision
and accuracy. We used the random variance model (RVM) (2)
ANOVA to assess differential expression between conditions
using data from cytoplasmic or polysome-associated mRNA
(Fig. 2A and Fig. S1A) and the RVM t test to identify differential
expression between each treatment and control (Fig. 2 B–D and
Fig. S1 B–D). To identify differential mRNA translation we used
analysis of partial variance (APV) (3) and applied RVM using
both an omnibus test (to assess differential translation between
the conditions) (Fig. 2A and Fig. S1A) and treatment contrasts
(to identify the effect on mRNA translation from each drug)
(Fig. 2 B–D and Fig. S1 B–D) as implemented in the anota R
package (4). In anota we applied the following settings for gene
selection: slopeP = 0.01; ΔPT = log2 (1) (as defined in the
anotaPlotSigGenes function in anota). For identification of dif-
ferential translation of each drug treatment to control we used a
cut off of false-discovery rate (FDR) < 0.15 for differential
translation and an effect < −log2(1.5) (Table S2). To group
genes based on drug sensitivity patterns we collected all genes
that showed differential mRNA translation under at least one
drug treatment compared with control, extracted their trans-
lational activity under all conditions (i.e., the intercepts from
APV), performed a per gene centering, and used k-means clus-
tering (in R) to identify 14 clusters which were manually anno-
tated to drug sensitivity patterns (Fig. 3A and Fig. S2). We used
GO::Termfinder (5) to identify enriched cellular functions as
defined by the gene ontology (GO) consortium (6) within subsets
of differentially regulated mRNAs corresponding to different
drug-sensitivity patterns. Only categories from the “cellular
process” system that defined >5 mRNAs in the drug sensitivity
group and show a >twofold enrichment compared with the
background with an FDR < 0.05 were collected (Fig. S3).
For NanoString data analysis, the obtained counts were log2-

transformed. Per sample normalization was performed using
geometric means from three housekeeping genes (GAPDH,
MRPS24, and TBCD). Based on the linearity of the positive
control signals we identified signals with≤64 counts as outside the
dynamic range. All genes that did not have at least four signals
with >64 counts were therefore removed (34 genes passed filter-
ing). We then applied anota to identify mRNAs whose translation
was suppressed under each drug treatment compared with control
(FDR< 0.15). The translational activities from all conditions (i.e.,
the intercepts from APV) were obtained for those mRNAs that
are translationally suppressed, and normalized to the vehicle
control to obtain relative effects (shown in Fig. 3B).
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Fig. S1. Mammalian target of rapamycin (mTOR) inhibitors and metformin suppress gene expression at the level of mRNA translation. (A) Histograms of
adjusted P values (FDRs) from ANOVAs comparing all conditions using data obtained from cytoplasmic or polysome-associated mRNA and from analysis of
translational activity using anota. Histograms of adjusted P values (FDRs) from treatment (metformin, PP242, or rapamycin) compared with vehicle using data
obtained from cytoplasmic (B), polysome-associated mRNA (C), or translation as analyzed using anota (D).
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Fig. S2. Expression patterns following drug treatments. k-Means clustering of genes that were translationally suppressed by at least one drug (anota FDR <
0.15 and fold-change >1.5). The table indicates the clusters that were assigned to the various drug sensitivity patterns.
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Fig. S3. mRNAs encoding proteins involved in cell cycle, metabolism, and RNA processing are enriched among mRNAs that are distinctly or commonly
translationally suppressed following drug treatment. Shown are −log10 (FDRs) for enrichments of GO categories (rows) among encoded mRNAs that were
grouped as distinctly or commonly translationally suppressed as indicated in Fig. 3A. Those categories that showed >twofold enrichment with an FDR < 0.05
and involved >5 members of the group (columns) were considered enriched.
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Fig. S4. Rapamycin, PP242 or metformin show overlapping and distinct translational suppression of mRNAs that encode for cell-cycle factors. Translational
activity calculated with anota after treatment with metformin, PP242, or rapamycin compared with vehicle (log2 scale) for mRNAs whose encoded proteins are
annotated to cell cycle according to GO.
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