Supplementary Data

Mutation	T-DNA	References
smg7-1	SALK_073354	(29)
smg7-2	SALK_025699	this study
smg7-3	SALK_112476	(29)
smg7-4	SAIL_63F08	this study
smg7-5	SALK_144162	(29)
smg7-6	SALK_052532	this study
upf1-1/lba1	n.a.	(28)
upf1-2	SALK_004606	(27)
upf1-3	SALK_081178	(26) (27)
upf1-4	SALK_022721	(26) (27)
upf1-5	SALK_112922	(26)
upf3-1	SALK_025175	(25) (26)
upf3-2	SALK_097931	(26)
pad4-1	n.a.	(57)
snc1-11	SALK_047058	(40)
ndr1-1/PR1::GUS	n.a.	(58) (59)

Supplementary Table S1. Arabidopsis mutant lines used in this study

Supplementary Table S2

List of oligos used in this study

Name	Sequence	Note
PR1-F	ACAAGATTATCTAAGGGTTCACAA	Generation of PR1 Northern probe
PR1-R	TTAGTATGGCTTCTCGTTCACATA	Generation of PR1 Northern probe
PR5-F	ATGGCAAATATCTCCAGTATTCACA	Generation of PR5 Northern probe
PR5-R	ATGTCGGGGCAAGCCGCGTTGAGG	Generation of PR5 Northern probe
PDF1.2-F	ΑCACAACACATACATCTATACA	Generation of PDF1.2 Northern probe
PDF1.2-R	TTAACATGGGACGTAACAGATA	Generation of PDF1.2 Northern probe
NMD2-F2	ATGATTCACTTCCATTTGTTG	RT-PCR of AT2G45670
NMD2-R	AAAGCACCGAGTTGGAAGGAA	RT-PCR of AT2G45670
Pad4-1-PfIMI-F	ATGAGTCGCATAAGACTAGCCAAG	Genotyping of pad4-1 mutants, PfIMI digest
Pad4-1-PfIMI-R	CCATTTCTTTCCTAAATGAAAATCA	Genotyping of pad4-1 mutants, PfIMI digest
SNC1F	CTGGTGCCTGAATGAATTGGTGGA	Genotyping of snc1-11 mutants
SNC1R	GCGATGGTGGAACTGGATAGAGA	Genotyping of snc1-11 mutants
NDR-F	GACGAGATTGCTCATTGCCATTGG	Genotyping of ndr1-1 mutants
NDR-R2	CGAATAGCAAAGAATACGAGTAAA	Genotyping of ndr1-1 mutant allele
NDR-RW	AGACGACTCAGTAGGACACACA	Genotyping of ndr1 wild type allele
lba1-dCAPS-F	GTTGCCAGTGTTGATTCTTTTCTAG	Genotyping of lba1/upf1-1 mutants, XbaI digest
lba1-dCAPS-R	TCCAACATTGATTTTCAGGAGA	Genotyping of Iba1/upf1-1 mutants, Xbal digest
UPF1-2F	AATATGAAGGGAGGCTTTGGTG	Genotyping of upf1-2 mutants
UPF1-2R	GCAGAACCACTTTCTACAAGAAGC	Genotyping of upf1-2 mutants
LIPF1-3F	GATGAGTCTACTCAAGCAACAG	Genotyping of upf1-3 mutants
UPF1-3R	GAATCTCAAGACTCTCACCTG	Genotyping of upf1-3 mutants
unf1-4F	CGGGTGGATTTGCTGTTGAT	Genotyping of upf1-4 mutants
AtlipF1-1R		Genotyping of up114 mutants
AtUPF1-1F		Genotyping of upf1-5 mutants
AtUPF1-2R		Genotyping of upf1-5 mutants
AtUPF3-4F		Genotyping of upf3-1 mutants
AtUPE3-6R	ATGCTGTTCCGGTTGTGGTGG	Genotyping of upf3-1/upf3-2 mutants
	CCTGATTATCTTGAGTTTCTT	Genotyping of upf3-2 mutants
Fst1h-1	GACCTTGGTAGCTGGTCCTGAG	Genotyping of smg7-1 mutants
Estib 1 Estib-2	GGACAACAGGCCAACCATTCAAC	Genotyping of smg7-1 and smg7-5 mutants
Est1b-7	GCAAACCCAGATAGGCTACTAGCA	Genotyping of smg7-2 smg7-3 and smg7-6 mutants
Est1b-14	CGCTTGGACCTACGTTTATTGATG	Genotyping of smg7-2, smg7-3 and smg7-6 mutants
Est1b-15	GCTGCTTCTCTTGCTAGTAGCCTA	Genotyping of smg7-4
Est1b-16	TGAGTGCCTACGCATGTGTGTAAACA	Genotyping of smg7-4
Est1b-5	GCCCGTGACAACTTGATTGTTGCTT	Genotyping of smg7-5
IBh1 3	ΔΤΤΤΤΑΓΓΕΔΑΤΤΤΕΑΔΑΓ	SALK left horder primer
IBc1	TGGACCGCTTGCTGCAACTCT	SALK left border primer
		SAIL left border primer
ΔT4G26410-F	GAGCTGAAGTGGCTTCCATGAC	α PCR analysis of $\Delta t 4 \sigma 26410$
ΔT4G26410-R	GGTCCGACATACCCATGATCC	α PCR analysis of At4g26410
PR1-aF2	GCTCTTGTAGGIGCTCTTGTTCTTCC	aPCR analysis of PR1
PR1-aF2		aPCR analysis of PR1
NMD2_DTC_aE1	GTGCATGAAATAAAGAGAAAAAGCTTC	aPCR analysis of $A + 2\sigma A = 5670$ -PTC
		apCR analysis of $At26+3070$ -ric
		q_1 Circle analysis of A(2g+3070 -r i C dilu +r i C) aDCR analysis of A+3 α /5670 ±DTC
INIVIDZTPIC-QFI	AAUUUUAIUIAAAIALAUAUAAAAULIIL	yr Un allalysis Ul Alzg45070 TPTU

Supplementary Figure S1. Structure of T-DNA integration sites in *smg7-6* and *smg7-4* alleles. Sequences derived from the SMG7 gene and from T-DNA borders (LB, RB) are highlighted. Green letters indicate microhomology between SMG7 and T-DNA at the fusion junction; sequences formed *de novo* at the sites of insertions are in red.

Supplementary Figure S2

Supplementary Figure S2. Inactivation of NDR1 does not rescue growth defects of *smg7-1* mutants. (A) Six week old plants carrying different mutant combinations grown at 60% humidity. (B) Northern blot analysis of expression of *PR1* in leaves of *smg7-1 ndr1* mutants and control plants. Ethidium bromide stained gel with *rRNA* species is shown as a RNA loading control.

Supplementary Figure 3. Alternatively spliced At2g45670 +PTC transcript is NMD target. (A) Stability of the +PTC transcript after inhibition of transcription with cordycepin in leaves of wild type plants. The +PTC transcript disappears within 1hr after cordycepin treatment (B) Effect of cycloheximide (CHX) on relative abundance of the +PTC transcript in wild type and *smg7-1* mutants. CHX treatment increases level of +PTC transcript in wild-type leaves.

Supplementary Figure S4. *upf1-5* and *upf3-1* mutants exhibit subtler growth defects and a milder increase in SA than *smg7-1* plants. (A) Four week old NMD mutant plants cultivated at $19^{\circ}C/16^{\circ}C$ and 60-70% humidity. (B) Levels of free SA in leaves of NMD mutants. Note that the total level of SA in *smg7-1* mutants grown at $19^{\circ}/16^{\circ}C$ is higher than in the plants grown at $21^{\circ}C$ (Figure 3D). This is consistent with improved growth performance of *smg7-1* mutants at higher temperature.

Supplemental References

- 57. Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R. and Ausubel, F.M. (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. *Genetics*, **146**, 381-392.
- Century, K.S., Shapiro, A.D., Repetti, P.P., Dahlbeck, D., Holub, E. and Staskawicz, B.J. (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. *Science*, 278, 1963-1965.
- Shapiro, A.D. and Zhang, C. (2001) The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. *Plant Physiol*, **127**, 1089-1101.