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SUPPLEMENTARY METHODS

The hidden Markov model

HMM states

The overall hidden Markov model (HMM) architecture reflects our intuition of how regulatory 

modules  are  organized  (Figure  1).  The HMM contains  three  types  of  generative  states  that 

represent three general types of sequence: inter-module background sequence, sites and regions 

between sites in modules, i.e. spacers. Each type of transcription factor binding site (TFBS) is 

represented by the corresponding position probability matrix (PPM) that is known a priori. The 

number of SITE states is  twice the number of PPMs used for prediction,  for the two DNA 

strands. The number of SPACER states depends quadratically on the number of SITE states, as 

each pair of SITE states has corresponding SPACER states.

Each generative state emits a sequence of nucleotides of varying length. This type of the 

HMM architecture is known as the Generalized Hidden Markov Model (GHMM) (20) or ‘HMM 

with duration’ (21, 22). This model allows for easy use of any predefined length distribution for 

sequences generated from a state, and not only the geometric distribution.

The emission  probability  distribution  for  every generative  state  can  be  represented  as 

follows:

P state  sequence=P state sequence∣L P state L ,

where P state  sequence is the probability to emit a nucleotide sequence from the state given 

the sequence length L , and P state L is the probability to emit any sequence of the length

L from this state.

Background state. The BACKGROUND (named  'BKG' on Figure 1) state is modeled by the 

first  order  local  Markov chain  whose  parameters  are  computed  from the  base  composition 

within the sequence window (we use the window size 500 and recompute the transition matrix  

every 100 nucleotides). The length of sequences emitted in the BACKGROUND state represents 

our expectations about the distance between CRMs. The model assumes that it is geometrically 
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distributed with the mean 1/ popen ( popen is the probability to open a module):

. PBKG L =1−popen
L−1⋅popen .

Site states. Each SITE state (named 'S1', 'S2'... on Figure 1) emits a sequence of nucleotides 

according to the corresponding site model (PPM). The word length necessarily equals the PPM 

length:

P SITE L={1if L=lengthPPM 
0if L≠lengthPPM 

The nucleotides of the SITE state are generated independently from each other with the 

frequencies that are determined by the corresponding PPM:

PSITE sequence∣L= ∏
0≤iL

f PPMi , ai ,

where f PPM i , a i is  the  frequency  of  nucleotide a i in  position i in  the  corresponding 

PPM. 

Spacer states. In all SPACER states  (named 'SPACER: D1' and 'SPACER: D2' on Figure 1), 

nucleotides are generated according to the same local Markov model as in the BACKGROUND 

state. The HMM has several types of the SPACER states differing by their sequence length 

distribution. These distributions determine the preferences in intersite distance for each motif 

pair  (see  later).  Here,  we  use  two  types  of  the  SPACER states  with  the  following  length 

distributions  (Supplementary  Figure  S2):  1)  the  geometric  distribution  with  the  mean m , 

reflecting site clustering without any distance specificity, 2) the damped sinusoid with the period 

of 10.5 nucleotides that corresponds to the situation when interacting proteins bind to the same 

side of the DNA helix. The latter distribution is defined by the function:

f i =Z⋅2
−round i+0 .5

10 .5 
⋅sin 2⋅π

10 .5
⋅i+0 .510.5

4 1 ,

where Z is a normalizing factor.
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Supplementary Figure S2. Distributions of distances between adjacent sites in a module.

HMM transitions

In our model a CRM begins and ends with a site. So, the BACKGROUND state has transitions 

only to the SITE states. Each SITE state has only two transitions: back to the BACKGROUND 

state (which means that the module is closed) or to a silent state  CLUSTER ELONGATION 

(named 'CE' on Figure 1), from which the BACKGROUND state can be reached only through 

one of the SITE states. Thus, the average number of sites in a CRM is regulated by the pclose

parameter that is the probability of a transition from a SITE state to the BACKGROUND state. 

The value of pclose  is the same for all SITE states.

The model assumes that regulatory modules may have preferred site arrangements. Firstly, 

sites of some types may prefer to be adjacent. This is modeled by introducing the NEXT SITE 

silent  states  (named  'NEXT:  S1',  'NEXT:  S2'...  on  Figure  1)  after  each  CLUSTER 

ELONGATION state. These states determine the type of a site which follows a given site in a 

CRM. As all possible pairs of site types are represented, the number of the NEXT TYPE silent 

states next to every CLUSTER ELONGATION state equals to the number of the site types. The 

probability distribution of the type of the next site can vary with a given site type thus defining  

the sites order preferences in a module.

Secondly, we take into account the spacing between binding sites, which is controlled by 

the SPACER states. The  NEXT SITE silent state has transitions to a set  of SPACER states, 

differing in their distance distribution. The distance between adjacent sites of certain types is 

distributed according to a mixture of the SPACER states' length distributions. The weights of the 
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distributions  in  the  mixture  differ  between  different  motif  pairs  and  are  determined  by the 

transition probabilities from the NEXT SITE state to the SPACER states.

The SPACER state is inevitably followed by the SITE state that has already been selected 

earlier (transition from the CLUSTER ELONGATION state to the defined NEXT SITE state).

Fixed parameters of the HMM

The model has fixed parameters, such as the threshold for the probability of the candidate sites 

( p ),  probabilities  of  CRM opening  and  closing  ( popen and pclose ),  parameter  for  the 

geometric distribution of the distance between adjacent sites in CRMs ( m ), and the threshold 

for  the  CRM  weight  ( w )  (weight  of  a  predicted  CRM  equals  to  the  ratio of  natural 

logarithms (base e) of two probabilities: the probability to obtain the nucleotide sub-sequence as 

generated by the CRM model and the probability to obtain it as generated by the background 

model). The values for these parameters were set intuitively and seemed to yield good results. 

For the Drosophila system m is set to 55, so that the average distance between adjacent sites 

in  a  module  is  55  bp, pclose = 0.1, popen = 0.001, p = 0.0045,  and w = 100.  For  the 

muscle dataset, the same parameter values were used, with the exception of m set to 20, as the 

training sequences in this dataset contained short promoter sequences with highly clustered sites.

Time reducing

To reduce the run time, the paths in the HMM graph that have very low probability are 

removed. This is achieved by allowing every SITE state to begin only in those positions, in  

which the corresponding positional weight matrix (PWM) has a match with a relatively high 

score. Prior to parsing a sequence with the constructed HMM, it is searched for sites that are 

sufficiently strong to form a part of a regulatory module. We call them candidate sites.

In other words, the HMM does not search for the sites itself, and it just combines some of 

them to obtain the best CRMs. Moreover, sites are forbidden to be adjacent sites in one module 

if they are separated by more than 500 nucleotides.

Candidate sites searching

To search  for  candidate  sites,  all  given  PPMs are  converted  to  PWMs by taking  the 

logarithms  of  the  PPMs'  elements. Then,  the  distributions  of  the  PWMs'  scores on  the 

background  sequences  are  constructed  by  scanning  all  noncoding  regions  of  the 

D. melanogaster genome. These distributions are used to set the PWM score cutoffs given the 
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desired probability threshold. 

Then, a candidate site is accepted in an input sequence if the probability to obtain a site 

with the same weight or better in a random sequence is lower than the set threshold p . 

To select  the  probability threshold p , the  following experiment  was performed.  We 

applied the algorithm to a set of AP patterning and several random genes (btd, cnc, cad, gt, hb, 

kni, Kr, ems, eve, h, run, odd, ftz, slp1, slp2, Chd3, CG9855, CG9287, CG9065, resilin, rad201, 

Prosalpha6T,  CG10345,  capa,  CaMKI) with p = 0.01, p = 0.02 and p = 0.03. Then we 

derived the maximum site probability among all sites that formed the predicted modules. The 

maximum observed site probability was 0.0041. So, we used p = 0.0045. This value of p

was used for all runs of CORECLUST in this study.

HMM parameters training

We use the Baum–Welch algorithm (26) to self-train the  transition probabilities of the 

HMM,  shown  by  dashed  lines  in  Supplementary  Figure  S1.  The  prior  distribution  of  the 

parameters is uniform. All probabilities are assigned according to the standard procedure (26), 

except the probabilities of the module-opening site types (BACKGROUND ➔ SITE transitions) 

that are estimated by the emission probabilities of the corresponding SITE states.

If some sequences in a training set are much closer to each other than the other ones, there 

is an option to decrease their total impact on the training by assigning scaling factors to the 

sequences according to their weights. For the Drosophila system, a phylogenetic tree taken from 

(39) is used to weight the sequences according to the Gerstein-Sonnhammer-Chothia algorithm 

(40).

Conservation score

To estimate the level of conservation of regulatory modules for a group of orthologous 

genes, the following measure was used.

The measure is based on site content of CRMs only and do not account for the order of 

binding sites. Only regulatory modules with weight higher than the predefined value w are 

considered. The module weights are not taken into account in any other way.  For the sake of 

presentation  clarity,  we  define  the  notion  of  a  'corresponding  row'  of  regulatory  modules. 

Consider a group of N orthologous genes. For m of them, regulatory modules are predicted 

(note that several regulatory modules may be found for one gene). Assume for the moment that 

5



we know which CRMs in different genes correspond to each other in the sense that they are 

similar to each other by their composition. We require that each CRM corresponds to at most 

one  CRM  in  another  organism. Thus,  we  can  consider  a  corresponding  row  of CRMs 

represented in a subset of the given orthologous genes (Supplementary Figure S3).

Supplementary Figure S3. Corresponding rows of he predicted regulatory modules (shown by 
the rectangles) represented in a subset of the orthologous genes (horizontal lines). Red arrows 
denote gene starts. See the text for explanation.

The  strength  (conservation  level)  of  a  corresponding row  of  CRMs  is  computed  as 

follows. First, we calculate the similarity score q ij for every pair of regulatory modules ( i

and j ) in the row (the module pairs are shown by dashed lines in Supplementary Figure S3). 

The pairwise similarity measure takes  into account  only site  sets  of the CRMs (that  is,  the 

number of sites of every type):

q ij=n ij⋅
∣∩ij∣
∣∪ij∣

,

where n ij is the half-sum of the numbers of sites in the CRMs i and j , ∣∩ij∣ is the size 

of the intersection and ∣∪ij∣ is the size of the union of the site sets of the CRMs i and j . 

The strength of the corresponding row is calculated as the sum of q ij along all pairs of CRMs 

in the row ( i j ), normalized by the number of genes in the orthologous group ( N ). The 

conservation score for a given group of genes is the total strength of all corresponding rows of 

CRMs found for this gene group:

Conservation score = ∑
rows

∑i j
qij

N
.

In practice one does not know which CRMs form a corresponding row. So, for each CRM 

in each organism we construct its own corresponding row by selecting the most similar (in the 
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above sense) regulatory module in every other organism. The final conservation score for a 

given gene group is calculated as the sum of strengths of all corresponding rows normalized by 

the number of orthologous genes that have predicted CRMs ( m ).

As an additional filter, before the conservation score is calculated, groups of orthologous 

genes that contain less than three genes with predicted CRMs (i.e. with m3 ), as well as 

orthologous groups with less than half of genes with predicted CRMs (i.e. m / N0.5 ), are 

removed from consideration.

Pseudocounts for PPMs

For every PPM, pseudocounts proportional to the square root of the number of sites, used 

for the matrix construction, are added (41): 

p , i=
c , i0.5⋅N⋅f bkg

N0.5⋅N
,

where c , i is the observed count of  nucleotide  in position i , f bkg  is the frequency 

of nucleotide  in the background distribution, N is the number of sites, and p , i is an 

element of the PPM. 

7



SUPPLEMENTARY DATA

Supplementary Tables

Supplementary Table S1. Genome-wide prediction of co-regulated genes for different training 
genes using CORECLUST and Cluster-Buster  (7).  Kcor,  Kcm,  and  Kcs are the sizes  of the 
intersections between the positive set and the gene lists predicted by CORECLUST and Cluster-
Buster (sorted by either the maximum or the sum of the module weights) respectively;  Pcor, 
Pcm and  Pcs are the hypergeometric p-values of enrichment between the predicted genes and 
the positive gene set; m is the number of genes in the test list. The best p-value in each line is set 
in bold.
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m CORECLUST

h 45 16 5.66E-22 10 8.04E-12 8 7.18E-09
eve 40 15 4.47E-21 8 2.66E-09 6 1.70E-06
pdm2 43 15 1.64E-20 9 1.67E-10 7 1.24E-07

28 13 6.62E-20 7 5.11E-09 6 1.83E-07
gt 30 13 2.08E-19 7 8.65E-09 6 2.84E-07
run 79 17 4.38E-19 12 7.24E-12 8 6.68E-07

21 11 9.19E-18 7 5.29E-10 5 1.16E-06
cad 77 16 9.38E-18 12 5.27E-12 8 5.48E-07
slp2 23 11 3.47E-17 7 1.10E-09 5 1.89E-06

34 12 1.10E-16 8 6.59E-10 6 6.24E-07
slp1 25 11 1.13E-16 7 2.12E-09 6 8.79E-08

108 17 1.21E-16 13 1.96E-11 10 5.98E-08
28 11 5.30E-16 7 5.11E-09 6 1.83E-07

bowl 145 18 1.12E-15 18 1.12E-15 11 1.01E-07
53 13 1.23E-15 10 4.62E-11 8 2.78E-08
32 11 3.09E-15 7 1.41E-08 6 4.27E-07

ems 19 9 3.29E-14 7 2.33E-10 4 2.49E-05
21 9 1.03E-13 7 5.29E-10 5 1.16E-06
21 9 1.03E-13 7 5.29E-10 5 1.16E-06
31 10 1.25E-13 7 1.11E-08 6 3.49E-07

Kr 51 11 9.83E-13 10 3.07E-11 8 2.03E-08
en 14 7 1.65E-11 6 1.62E-09 4 6.66E-06

Training 
gene

Cluster-Buster(max) Cluster-Buster(sum)
Kcor Pcor Kcm Pcm Kcs Pcs

ftz

prd

tll

btd
salm

knrl
fkh

Dfd
hb
kni



Supplementary Table S2. Correlation coefficient (CC) and positive predictive values (PPV, 
precision) for the predictions made by CORECLUST, CORECLUST-FC and CORECLUST-F. 
TOTAL row contains values calculated for the whole gene set. The maximum value in each line 
is set in bold.

Supplementary Figures

Supplementary  Figure  S4.  An effect  of  inclusion  of  structural  aspects  on  the  prediction 
accuracy  for  Drosophila (A)  and  vertebrate  (B)  datasets.  The  measures  are  correlation 
coefficient (CC ), sensitivity (Sn), specificity (Sp), positive predictive value (PPV), performance 
coefficient (PC), and average site performance (ASP).
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gene
CC PPV

CORECLUST CORECLUST-FC CORECLUST-F CORECLUST CORECLUST-FC CORECLUST-F
h 0.69 0.62 0.59 0.83 0.82 0.82

0.43 0.43 0.53 0.62 0.62 0.84
0.32 0.28 0.35 0.35 0.34 0.48
0.31 0.31 0.11 0.51 0.51 0.31

eve 0.73 0.65 0.62 0.76 0.70 0.70
run 0.08 0.15 0.10 0.59 0.81 0.72

0.26 0.23 0.29 0.42 0.47 1.00
gt 0.41 0.42 0.35 0.78 0.78 1.00
Kr 0.45 0.53 0.61 0.58 0.65 1.00
cad -0.03 -0.03 -0.03 0.00 0.00 0.00

0.26 0.17 1.00 1.00
ems -0.02 -0.01 0.00 0.00

0.45 0.71 0.54 0.26 0.59 0.36
slp1 0.35 0.35 0.43 0.68 0.70 1.00
bowl 0.20 0.20 0.15 0.15

0.23 0.27 0.16 0.23
0.31 -0.04 0.28 0.00

TOTAL 0.32 0.31 0.32 0.51 0.55 0.68

kni
hb
ftz

tll

prd NaN NaN
NaN NaN

btd

NaN NaN
salm NaN NaN
fkh NaN NaN

CC Sn Sp PPV PC ASP
0

0.2

0.4

0.6

0.8

1
A

CORECLUST
CORECLUST-FC
CORECLUST-F

CC Sn SP PPV PC ASP
0

0.2

0.4

0.6

0.8

1
B

CORECLUST
CORECLUST-FC
CORECLUST-F
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Supplementary  Figures  S5. Examples  of  CRM  predictions  made  by  CORECLUST, 
demonstrating  advantage  of  accounting  for  regulatory structure.  In  all  cases,  CORECLUST 
managed to found CRMs corresponding to the known modules, while  CORECLUST-FC and 
CORECLUST-F failed to identify these CRMs at all, or scored them with weights much lower 
than a threshold. Regulatory modules are shown by blue rectangles. The heights of the predicted 
CRMs correspond to their weights. At the top line the known regulatory regions from REDFly 
database  (34)  are  presented.  Other  lines  correspond  to  orthologous  genes  from  different 
genomes: dmel -  D. melanogaster,  dana - D. ananassae,  dpse - D. pseudoobscura,  dwil - D.  
willistoni,  and dgri - D. grimshawi. Genes are shown in green, exons are colored by orange. 
Gray rectangles  below the  lines  denote  repeat  regions.  The  site  compositions  of  CRMs of 
interest are shown next to them. The site strand is shown by symbols '>' (positive strand) and '<' 
(negative strand). (A) Predictions made for gene hb. The CRM of interest is a poly-Bcd module 
at ~3Kbp downstream the gene start in D.melanogaster genome. (B) Predictions made for gene 
tll. The CRM of interest is located downstream the gene and contains Cad, Kr and Tll binding 
sites. (C)  Predictions made for gene eve. The CRMs revealed by CORECLUST are two closely 
spaced CRMs at ~5Kbp downstream the gene start in D.melanogaster genome.
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Supplementary Figure S6.  Comparison of the conservation level of the CRMs predicted by 
CORECLUST, CORECLUST-FC and CORECLUST-F. The model training and CRM search 
were done separately for every gene. 

Supplementary Figure S7. Parameters of the model, trained on the muscle dataset. Each cell (i, 
j) of the table contains the conditional probability to observe a site of type j next to a site of type 
i (first number), and the probability that the distance between these sites is distributed according 
to  the  helical  phasing  distribution  (second number).  The color  of  a  cell  corresponds  to  the 
conditional probability value. The site strands are shown by symbols '>' (positive strand) and '<' 
(negative strand).
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Captions for Supplementary Figures S8 and S9 (in separate files)

Supplementary  Figure  S8. Parameters  of  the  model  trained  on  eleven  Drosophila 
developmental genes. See Supplementary Figure S7 for notations.

Supplementary Figure S9. Distributions of intersite distance for the overrepresented site pairs 
predicted for the eleven Drosophila developmental genes. The distribution plots are organized as 
a table where rows correspond to the first site in a pair and columns correspond to the second 
site;  the site strands are shown by symbols '>' (positive strand) and '<' (negative strand). Each 
cell of the table corresponds to one site pair. The correlation coefficient for the sites in a pair and 
the  number  of  observed  site  pairs  are  shown at  each  plot.  The  site  pair  is  shown  if  it  is 
overrepresented, which means that it was observed at least 70 times and the absolute value of 
the correlation coefficient for its sites is more than 0.2 (both are presented on the plot). As an 
exception, the distributions for the site pairs Gt>Gt> and Gt<Bcd> are shown, in spite of a very 
low number of the observations. The width of the border is proportional to the absolute value of 
the correlation coefficient  for the pair.  The distributions were build based on the regulatory 
modules with weight ≥ 100. Predictions were made for the well-known developmental genes in 
all  analyzed  Drosophila genomes.  The distance was measured between the sites'  starts.  The 
random distance distribution is shown by the red line. 
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