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Rationale: 
The field of pharmacogenomics is advancing rapidly. To date, CPIC has published guidelines for several 
drug-gene-outcome relationships relevant to cardiovascular disease and many more guidelines are being 
constructed. For drugs with narrow therapeutic indices (e.g., anticoagulants and antiarrhythmics), 
inherited (or acquired) variability in pharmacokinetic (PK) processes can have devastating clinical effects.  
HMG-CoA reductase inhibitors (statins), however, have a relatively wide therapeutic index, raising the 
question “why use SLCO1B1 genotype to optimize prescribing in the context of simvastatin therapy?”  
 
Statins are the most commonly prescribed class of drugs in the industrialized world. While the relative 
rate of serious ADRs is extremely low for statins, their frequent use leads to a high absolute number of 
ADRs. As a result, any reduction in statin-related ADRs has the potential to improve public health. 

Our recommendations are based upon ten important principles: (A) clinical indication for the use of a 
statin is extremely common (i.e., coronary heart disease is the most common cause of death in the 
industrialized world), (B) the drug is highly efficacious in the primary and secondary prevention of 
coronary heart disease (1-4), (C) statins are among the most commonly prescribed drugs, (D) at present, 
simvastatin is the most commonly prescribed statin, (E) severe adverse drug reactions (myopathy and 
rhabdomyolysis) are potentially fatal (5-20), (F) mild adverse drug reactions (myalgias) occur rather 
frequently (i.e., more than 1% of subjects exposed) (21-23), (G) the association between rs4149056 in 
SLCO1B1 and muscle toxicity has a large effect size for simvastatin (odds ratio from 2.0 to 20.0, 



depending upon drug dose, gene dose, and the definition of intolerance) (24), (H) rs4149056 in SLCO1B1 
is quite common within the general population (25-27), (I) simvastatin intolerance often leads to 
nonadherence (28), and (J) the public health implications of nonadherence are disastrous (an increase in 
the overall burden of coronary heart disease). Our dosing guideline therefore leverages rs4149056 to 
optimize simvastatin therapy, in the context of recent FDA recommendations (Supplemental Table 1). 
 
All CPIC guidelines are simultaneously published and updated on-line at www.pharmgkb.org.  

Literature Review: 
We searched the PubMed database (1966 to May 2010) and Ovid MEDLINE (1950 to May 2010) using 
several keyword strategies: SLCO1B1, SLCO1B1 x myopathy (26, 27, 29-48), SLCO1B1 x statin 
myopathy (26, 27, 29-48), SLCO1B1 x simvastatin  (26, 27, 29, 32, 34, 35, 38, 49-52) (45, 48, 53-58), 
SLCO1B1 x LDL lowering (30, 31, 49, 55, 56, 59-64), SLCO1B1 x statin efficacy (30, 31, 36-38, 41, 46, 
55-57, 59-68), SLCO1B1 x statin kinetics x human x polymorphism (26, 27, 33, 34, 36, 38, 50, 51, 57, 
60, 65, 68-80), SLCO1B1 x cardiovascular (7, 27, 29, 32, 36, 38, 47, 49, 51, 55-57, 59, 81), and 
SLCO1B1 x statin uptake x hepatocyte (51, 54, 75, 82-88). The results of our search have been 
summarized within the body of the main guideline manuscript, and all references have been included in 
this Supplement. 

SLCO1B1 nomenclature is summarized in Supplemental Table 2. For rs4149056, the racial distribution 
has been summarized in Supplemental Table 3 with details by geographic locale in Supplemental Table 4. 

To construct tables showing SLCO1B1 minor allele frequency based on ancestry, the PubMed database 
was further searched using the following criteria: SLCO1B1, OATP1B1, population, rs4149056, 
SLCO1B1*5, SLCO1B1 *15. Studies were included if: (A) the race of the population was clearly 
indicated, (B) allele frequencies or minor allele percentages for SLCO1B1 haplotypes were reported, (C) 
the method by which SLCO1B1 was genotyped was reliable, (D) the sample size was at least 20 subjects.   

Because the pharmacokinetic effect of the C allele at rs4149056 appears to be larger for simvastatin than 
any other statin, we present a detailed list of published findings drug-by-drug in Supplemental Table 5. 

Available Genetic Test Options 
Commercially available genetic testing options change over time. Several current options are listed at 
http://www.pharmgkb.org . Many of our contributing institutions already conduct SLCO1B1 genotyping. 

At present, Vanderbilt University genotypes SLCO1B1 on the Illumina ADME array in a CLIA approved 
environment, and actively moves the genotypes into their medical record at the point of prescribing. The 
Pharmaceutical Sciences Department at St. Jude Children’s Research Hospital genotypes SLCO1B1 
through routine application of the DMETTM Plus Affymetrix array in a CLIA approved environment. 
 
Several additional CLIA-approved labs offer genotyping via the Illumina VeraCode ADME array or the 
DMETTM Plus Affymetrix array, without direct links to medical records. Examples of readily available 
CLIA-approved ADME genotyping include Illumina Clinical Services Laboratory (San Diego, CA) and 
BioReliance (Rockville, MD).  Examples of readily available CLIA-approved DMETTM genotyping 
include SeqWright DNA Technology Services (Houston, TX), Beckman Coulter Genomics (Morrisville, 
NC), Coriell Institute for Medical Research (Camden, NJ) and Expression Analysis (Durham, NC). 



 
Single SNP genotyping is available through QPS, LLC (Quality Performance Service), a full-service 
CLIA-compliant contract research organization providing testing services to support preclinical and 
clinical research and development (in Newark, DE, Groningen, the Netherlands, and Taipei, Taiwan).  
QPS uses a Taqman assay to genotype rs4149056 (and rs2306283), and therefore provides results for the 
*1A, *1B, *5, *15 haplotypes. SLCO1B1*5 genotyping (rs4149056 alone) is also available for clinical 
use at Uppsala University Hospital, in Sweden (www.genotypning.se) and at HUSLAB in Finland 
(www.huslab.fi). Uppsala University uses a method based upon Applied Biosystems real-time PCR (Life 
Technologies, Carlsbad, CA) and HUSLAB uses an accredited method based on cyclic minisequencing. 
 
Levels of Evidence 
The evidence summarized within the main guideline manuscript has been graded using the three-tiered 
system required by the Clinical Pharmacogenetics Implementation Consortium  (Relling MV, Klein TE. 
Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. 
Clinical Pharmacology Therapeutics 2011 89(3):464-7.), as modified slightly from Valdes et al. (2010). 
 

HIGH: Evidence includes consistent results from well-designed, well-conducted studies. 
 

MODERATE: Evidence is sufficient to determine the effects, but the strength of evidence is 
limited by the number, quality, or consistency of the individual studies, by the inability to 
generalize to routine practice, or by the indirect nature of the evidence. 

LOW: Evidence is insufficient to assess the effects on health outcomes because of the limited 
number of studies, insufficient power of the studies, important flaws in their design or in the 
way they were conducted, gaps in the chain of evidence, or lack of information. 

Strength of Recommendations 
Multiple rating schemes were evaluated. Ultimately, we (CPIC) chose to use a slight modification of a 
transparent and simple system for just three categories for recommendations: strong, where “the evidence 
is high quality and the desirable effects clearly outweigh the undesirable effects”; moderate, in which 
“there is a close or uncertain balance” as to whether the evidence is high quality and the desirable clearly 
outweigh the undesirable effects; and optional, for recommendations in-between strong and weak where 
there is room for differences in opinion as to the need for the recommended course of action.  
 
CPIC’s dosing recommendations weigh the evidence from a combination of preclinical and clinical data. 
Some of the factors that are taken into account include in vivo clinical outcome data for statins, in vivo 
pharmacodynamic data for statins, and in vivo pharmacokinetic data for statins, in individuals who vary 
by SLCO1B1 genotype. We also consider in vitro pharmacodynamic and pharmacokinetic data for statins.   
 
The dosing recommendations are simplified to allow rapid interpretation by clinicians, as adapted from 
the rating scale for evidence-based therapeutic recommendations on the use of retroviral agents (Panel on 
Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in 
HIV-1-infected adults and adolescents. DHHS October 14, 2011; 1–167. Guideline available on-line at: 
http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf . Accessed [January 15, 2012]). 

 



 Strong recommendation for the statement 
 Moderate recommendation for the statement  
 Optional recommendation for the statement  

 
Current Models for Implementation  
Model #1: Genotyping “just in time.” Duke University’s Center for Personalized Medicine genotypes 
individuals with prior statin intolerance for *5 (rs4149056 alone) and provides patient and providers with 
genotype specific education and guidance. Duke also offers SLCO1B1*5 genetic testing to assist primary 
care physicians (via test results and interpretation via the EMR) in reinitiating statin therapy for patients 
who are nonadherent to statin therapy.  Patients found to be carriers of the *5 allele are provided with 
their genotype, and steered toward an alternate drug with lower risk for kinetic changes; e.g., rosuvastatin 
(if high potency is desired), pravastatin (if low potency is acceptable), or fluvastatin (to minimize drug-
drug interaction). Noncarriers are advised to consider restarting their prior statin and monitor CK level. 

Model #2: Genotyping “just in case.” This pre-emptive model, assumes that – at some point in the not too 
distant future – SLCO1B1 genotype data will be available on a patient by patient basis, through electronic 
access to whole genome sequencing data within comprehensive electronic medical records. One such 
model was implemented at Vanderbilt University Medical Center in 2011, wherein an Illumina ADME 
assay is run in a CLIA approved environment, and stored behind each patient’s EMR. The data are 
brought forward, gene-by-gene, at the point of prescribing, when any physician attempts to prescribe a 
drug from within a pre-selected group determined by the hospital Pharmacy and Therapeutics Committee. 
This committee meets quarterly to review the dynamic list of drugs on this list. At present, this list is 
based upon published CPIC guidelines: clopidogrel, warfarin, and simvastatin (with decision support 
algorithms for thiopurines and codeine under construction and scheduled for implementation soon). The 
initiative, called PREDICT (Pharmacogenomics Resource for Enhanced Decisions in Clinical Care and 
Treatment) was activated in 3000 subjects undergoing percutaneous coronary intervention in 2011, and 
recently expanded to 10,000 high risk individuals served by the Vanderbilt University primary care 
clinics. When a provider attempts to prescribe simvastatin, the patient’s EMR is immediately populated 
with rs4149056 genotype in a chart section called drug-genome interactions (just below drug allergies). 
(Pulley, J.M. et al. Operational implementation of prospective genotyping for personalized medicine:   
The design of the Vanderbilt PREDICT project. Clinical Pharmacology and Therapeutics in press) 

Incidental findings  
Hepatic uptake of unconjugated bilirubin is mediated by SLCO1B1 (67). Variation in SLCO1B1 has been 
shown to alter total serum bilirubin levels (67, 89-92) and has been associated with hyperbilirubinemia in 
adult Asians (93). Variants in SLCO1B1 are also associated with increased risk for gallstone disease 
(rs11045819) (94), as well as hypertension (rs4149014) (95) and coronary artery disease (rs4149013) 
(96). 

The SLCO1B1 gene product transports many drugs and biochemicals (reviewed in details by Niemi et al, 
2011).  The C allele at rs4149056 is related to impaired transport of many drugs in vitro and in vivo, 
including for example changes in irinotecan disposition (97, 98) and clearance of the antiretroviral drug 
lopinavir (99). Other variants have an impact as well. For example, SLCO1B1 rs11045819 polymorphism 
(c.463C>A) is associated with lower rifampin exposure in adults with pulmonary tuberculosis (100). 



The Role of Ancestry 
Our guideline reflects recent recommendations from the U.S. FDA regarding the strong dose-dependence 
of muscle toxicity for simvastatin. For other statins, the FDA has further recommended limiting the dose 
based upon major continental race (FDA Public Health Advisory on rosuvastatin; Media release March 2, 
2005). For rosuvastatin, specifically, the FDA recommends limiting patients of Asian ancestry to a 5 mg 
starting dose, based upon two clinical observations: first, that patients of Asian ancestry exhibit a 2-fold 
increase in AUC for rosuvastatin, compared to patients of European ancestry, following single dose 
exposure (72) and second, that patients of Asian ancestry have greater lipid lowering efficacy at lower 
doses of rosuvastatin, compared to patients of European ancestry  (72). As a result, the FDA has 
concluded that Asian Americans are one of three important groups with an elevated risk/benefit ratio (the 
others were patients on CSA/immune suppression and patients with severe kidney failure) (81, 83, 101-
105). 
 
Geographic differences in allele frequency for rs4149056 in SLCO1B1 do not appear to contribute to this 
race discrepancy (72). For rosuvastatin, this difference appears to be at least partly attributable to 
variability in efflux transporters such as ABCG2, as well as gene-gene and gene-environment interactions 
not yet defined (Feng et al. Genetic and non-genetic determinants of statin-induced muscle toxicity. 
Pharmacogenomics in press).  For simvastatin, race-dependent differences in SLCO1B1 variant frequency 
carry an undefined impact on outcome. Because there is great variability in the distribution of this variant 
by race (106), we present a summary in Supplemental Table 3 and details in Supplemental Table 4. 
 
Other Limitations 
The pharmacokinetic predictors of statin-induced myopathy are well understood (16, 29, 31-34, 51, 70, 
76-78, 107-113). Pharmacodynamic predictors have been less well characterized. Although the cellular 
mechanism linking statins to skeletal muscle damage still remains somewhat obscured, the weight of the 
evidence suggests that statin-mediated reduction in the levels of critical cholesterol precursors (i.e., 
isoprenoids) can lead to mitochondrial dysfunction, and programmed cell death (12, 36, 114, 115). While 
inherited variability in the prenylation of key mitochondrial oxygen transport proteins may drive a 
subclinical form of myopathy that becomes overtly manifest after exposure to statin, there is only limited 
evidence supporting the clinical utility of genotyping pharmacodynamic variants. 
  

Genotype at rs4149056 (PK variability) also alters statin efficacy (37, 56). Because rs4149056 influences 
hepatic uptake of statins, the minor allele has opposite effects on toxicity and efficacy; i.e., the presence 
of the minor allele attenuates the LDL-lowering effect (because the liver is the primary site for de novo 
cholesterol biosynthesis). Carriers of the rs4149056 C allele thus experience decreased efficacy with 
regard to LDL-lowering when taking simvastatin (31, 55, 116, 117) compared to other statins such as 
atorvastatin (61) or fluvastatin (59). As anticipated from the kinetic data, the effect of rs4149056 on 
efficacy is minimal for pravastatin (60, 69, 84), rosuvastatin (49, 118), and pitavastatin (62, 71, 82, 119, 
120). Even for simvastatin, however, the change in LDL level due to rs4149056 is small (<10 mg/dl) (31), 
and there is no evidence that this variant impacts vascular events. As such, we do not make 
recommendations based upon the relationship between rs4149056 and efficacy.  
 
We also do not make recommendations based upon gain of function alleles (30). Because rs4149056 can 
be inherited in combination with other SLCO1B1 variants that carry a protective effect, the C allele at 



rs4149056 should not be assumed to confer risk with 100% certainty. Like all drug-gene-outcome 
relationships reviewed by CPIC, it is anticipated that these guidelines will be updated as more variants 
(both common and rare) are increasingly characterized, e.g., through deep re-sequencing. 

In the interim, a clear limitation inherent in our approach is that both rare and de novo variants are not 
determined within currently available genotyping tests. Yet, rare exonic variants in SLCO1B1 have been 
shown to have clinical impact (e.g., methotrexate clearance) (121). Therefore, altered drug kinetics and 
increased risk for severe drug toxicity may still occur in the absence of a C allele at rs4149056, and a TT 
genotype at rs4149056 does not imply the absence of another potentially deleterious variant in SLCO1B1. 
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FIGURE LEGEND 

 

Supplemental Figure 1. Pharmacokinetic impact of rs4149056 genotype for several statins.  

Effect of the SLCO1B1 c.521T>C variant (rs4149056) on plasma exposure (i.e., area under the 
concentration-time curve) for different statins, CC vs TT. This summary figure represents a 
composite of single-dose data from the following references: 66 (Pasanen et al), 71 (Ieiri et al), 72 
(Lee et al), 75 (Niemi et al), 77 (Pasanen et al), 118 (Choi et al), 120 (Deng et al), 122 (Ho et al). 

Portions of this figure have been reproduced from reference 26 (Niemi et al) with permission from 
the author (MN), the publisher, the American Society for Pharmacology and Experimental 
Therapeutics (ASPET), and Pharmacological Reviews. 

 

 

 

  




