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Web Appendix A

Proof of Lemma 1.

For n = 1, 2, . . ., let {σn} be a sequence of real numbers with 0 6 σn < 1 for all n

such that σn converges to 1, i.e. limn→∞ σn = 1. For n = 1, 2, . . ., let Ẋn be the sum of m

exchangeable binary random variables, each with mean p and with pairwise correlation σn.

Let Zn = Ẋn/m so E(Zn) = p, var(Zn) = m−2var(Ẋn) = m−1p(1− p){1 + (m− 1)σn}, and

limn→∞ var(Zn) = p− p2, implying limn→∞E(Z2
n) = p.

Let An = {0 < Zn < 1}, pr(An) = αn, pr(Zn = 1) = βn, E(Zn | An) = µn and

E(Z2
n | An) = νn. For all n, E(Zn) = E(Zn | An)pr(An) + pr(Zn = 1) = µnαn + βn = p. For

all n,

µn − νn =

m−1
∑

i=1

[{

i(m− i)

m2

}

pr(Zn = i/m | An)

]

>
m− 1

m2
,

so νn 6 µn − (m− 1)/m2. Let c = (m− 1)/m2. This implies E(Z2
n) = E(Z2

n | An)pr(An) +

pr(Zn = 1) = νnαn+βn 6 (µn−c)αn+βn = µnαn+βn−cαn = p−cαn. Because c is a positive

constant and limn→∞E(Z2
n) = p, limn→∞ αn = 0. Therefore, limn→∞ pr(0 < Ẋn < m) = 0.

For all n, µn 6 (m − 1)/m < 1 so limn→∞ µnαn = 0. Since µnαn + βn = p, it follows

limn→∞ βn = p. This implies limn→∞ pr(Zn = 0) = 1− p, so limn→∞ pr(Ẋn = 0) = 1− p and

limn→∞ pr(Ẋn = m) = p.
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Proof of Lemma 2.

pr(Ẋ ′ = ẋ′) =

m−(m′−ẋ′)
∑

ẋ=ẋ′

pr(Ẋ ′ = ẋ′, Ẋ = ẋ)

=

m−(m′−ẋ′)
∑

ẋ=ẋ′

pr(Ẋ = ẋ)pr(Ẋ ′ = ẋ′ | Ẋ = ẋ)

=

m−(m′−ẋ′)
∑

ẋ=ẋ′

Eπ

{(

m

ẋ

)

πẋ(1− π)m−ẋ

}

(

m′

ẋ′

)(

m−m′

ẋ−ẋ′

)

(

m

ẋ

)

=Eπ

{

(

m′

ẋ′

)

πẋ′

(1− π)m
′−ẋ′

×

m−(m′−ẋ′)
∑

ẋ=ẋ′

((

m−m′

ẋ− ẋ′

)

πẋ−ẋ′

(1− π)m−m′−(ẋ−ẋ′)

)

}

=Eπ

{

(

m′

ẋ′

)

πẋ′

(1− π)m
′−ẋ′

×
m−m′

∑

ẋ=0

((

m−m′

ẋ

)

πẋ(1− π)m−m′−ẋ

)

}

=Eπ

{(

m′

ẋ′

)

πẋ′

(1− π)m
′−ẋ′

}

Proof of Lemma 3. Suppose m′ = 1, so E(π) = pr(Ẋ ′ = 1) = p. When m′ = 1, pr(Ẋ ′ =

1) = pr(Xi = 1) = E(Xi) for all i, so E(Xi) = p by Lemma 2. Suppose m′ = 2, so E(π2) =

pr(Ẋ ′ = 2) = σp(1− p) + p2. For all i 6= j, E(XiXj) = pr(Xi = 1, Xj = 1) = pr(Ẋ ′ = 2) and

cor(Xi, Xj) =
E(XiXj)− E(Xi)E(Xj)

√

var(Xi)var(Xj)

=
σp(1− p) + p2 − p2

p(1− p)

= σ
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Web Appendix B

In this section we elaborate on three key assumptions made in the main paper regarding

test error. For further discussion of these assumptions see Kim et al. (2007) and Kim and

Hudgens (2009).

I. Given a pool contains at least one positive unit, the probability the pool tests positive

equals Se, where Se is the test sensitivity.

II. Given a pool contains no positive units, the probability the pool tests negative equals

Sp, where Sp is the test specificity.

III. Conditional on the true status of a pool, the test result for that pool is independent of

the true status and test result of any other pool.

Assumption I implies that the test sensitivity is independent of the number of specimens

composing a pool and of the number of positive specimens within a pool. Models that

allow for sensitivity to depend on pool size (e.g., to account for possible dilution effects)

are not considered. In light of assumption I, the results in the main paper can be viewed

as appropriate in settings where the largest pool sizes are small enough that appreciable

dilution effects are unlikely. Similarly, assumption II implies test specificity is independent

of pool size. This assumption would be dubious in settings where there is synergism or

additive effects (Xie et al. 2001), i.e., where two negative units may produce a false positive

result when placed in the same pool. Extensions of the results in the main paper relaxing

assumptions I and II that allow for sensitivity and specificity to depend on pool size (e.g., as

in Johnson et al. 1991) should be straightforward and could be considered for future research.

3



Web Appendix C

In this section we describe an investigation regarding the robustness of the efficiencies derived

in the main paper when Assumption 2 (i.e., units within a cluster are exchangeable) does not

hold. A simulation study was conducted where clusters of units had an auto-regressive (AR)

correlation structure. In particular, using the method described in Section 2.2 of Lunn and

Davies (1998), clusters were simulated such that for a cluster of m ordered units X1, . . . , Xm

the correlation between any two units was cor(Xi, Xj) = θ|i−j| for i, j ∈ {1, . . . , m}. Effi-

ciencies of the three stage nested hierarchical procedure (as in Figure 3 of the main paper)

and the rectangular matrix algorithm (as in Figure 4 of the main paper) when clusters have

an AR correlation structure were calculated empirically via simulation. The empirical AR

efficiencies were compared with the efficiency expected if it was assumed (incorrectly) that

units within a cluster had an exchangeable correlation structure with correlation σ equal to

the average true correlation between units, i.e., σ =
∑m−1

i=1 (m− i)θi/
(

m

2

)

.

The simulation results are given in Web Figures 9 and 10. These results show that assuming

an exchangeable correlation structure can yield efficiency estimates that are relatively close

to the true AR efficiencies. For example, looking at Web Figure 10, for a 1× 16 rectangular

matrix procedure and average correlation between units of 0.2, the AR efficiency equals

0.29 whereas the efficiency assuming an exchangeable correlation structure equals 0.30. In

contrast, a naive approach that assumes no correlation between units would estimate the

efficiency to be 0.45. For the 4× 4 rectangular matrix procedure the true AR efficiency and

the efficiency assuming an exchangeable correlation structure are nearly identical (black and

gray dashed lines in Web Figure 10). For the three stage hierarchical procedure efficiencies

presented in Web Figure 9 the approximation assuming exchangeable correlation is less

accurate although the bias is modest.
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Web Figures
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Web Figure 1: Efficiencies for a two stage hierarchical procedure where Se = Sp = 0.9,

n1 = 64 and p = 0.001 by cluster size m, pairwise correlation σ, and model
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Web Figure 2: Efficiencies for a two stage hierarchical procedure where Se = Sp = 0.8,

n1 = 64 and p = 0.001 by cluster size m, pairwise correlation σ, and model
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Web Figure 3: Efficiencies for three stage hierarchical procedures where Se = Sp = 0.9, n1 =

256, p = 0.001, and m = 32 by pairwise correlation σ, stage two pool size n2, arrangement,

and model
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Web Figure 4: Efficiencies for three stage hierarchical procedures where Se = Sp = 0.8, n1 =

256, p = 0.001, and m = 32 by pairwise correlation σ, stage two pool size n2, arrangement,

and model
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Web Figure 5: Efficiencies for a 16×16 matrix procedure where p = 0.05, Se = Sp = 0.9 and

clusters are of size m = 16 by arrangement, pairwise correlation σ, and model
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Web Figure 6: Efficiencies for a 16×16 matrix procedure where p = 0.05, Se = Sp = 0.8 and

clusters are of size m = 16 by arrangement, pairwise correlation σ, and model
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Web Figure 7: Efficiencies for a 9 × 10 matrix procedure where p = 0.07, Se = Sp = 0.9 by

pairwise correlation σ, cluster size m, arrangement, and model
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Web Figure 8: Efficiencies for a 9 × 10 matrix procedure where p = 0.07, Se = Sp = 0.8 by

pairwise correlation σ, cluster size m, arrangement, and model
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Web Figure 9: Efficiencies for a three stage nested hierarchical procedure where Se = Sp = 1,

n1 = 256, n2 = 16, p = 0.001, and m = 32 as described in Web Appendix C.
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Web Figure 10: Efficiencies for a 16 × 16 matrix procedure where Se = Sp = 1, p = 0.05,

and m = 16 as described in Web Appendix C. The 4× 4 efficiencies (gray and black dashed

lines) are nearly identical.
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