Supplemental Material: ## Modeling the Residential Infiltration of Outdoor PM_{2.5} in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) Ryan W. Allen^{1*}, Sara D. Adar², Ed Avol³, Martin Cohen⁴, Cynthia L. Curl⁴, Timothy Larson^{4,5}, L.-J. Sally Liu^{4,6}, Lianne Sheppard^{4,7}, and Joel D. Kaufman^{4,8,9} ¹Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada ²Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA ³Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA ⁴Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA ⁵Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA ⁶Institute of Social and Preventive Medicine, University of Basel, Basel, Switzerland ⁷Department of Biostatistics, University of Washington, Seattle, WA, USA ⁸Department of Epidemiology, University of Washington, Seattle, WA, USA ⁹Department of Medicine, University of Washington, Seattle, WA, USA ### **Table of Contents for Supplementary Material** | | Page | |--|------| | Methods | | | Data Reduction | 3 | | Calculation of Contributions to Indoor Concentrations | 3 | | Model Development | 4 | | References | 5 | | Table 1: Comparison of selected home and resident characteristics between the | | | full MESA Air cohort and the subgroup selected for home indoor/outdoor | 6 | | (I/O) sampling. | | | Table 2: Mean (\pm SD) 2-week PM _{2.5} concentrations and estimated indoor and | | | outdoor contributions to indoor PM _{2.5} concentrations by community and | 7 | | season. | | | Table 3: Main MESA Air Questionnaire questions used to derive predictors in | 8 | | the generalizable and 2-week specific infiltration efficiency models. | O | | Table 4: Infiltration Questionnaire questions used to derive predictors in the 2- | 9 | | week specific infiltration efficiency models. | | | Figure 1. Infiltration efficiency vs. average outdoor temperature during the 2- | | | week sampling period among a) homes not using air conditioning and b) | 10 | | homes using air conditioning. | | | Figure 2: Comparisons of measured infiltration efficiencies (x-axes) with | | | values predicted from a leave-one-community out cross validation (y- | 11 | | axes) for the generalizable models shown in Table 2. | | #### **Methods** #### Data Reduction After QA/QC checks for pump failures, dropped/torn filters, etc., there were 573 valid I/O sulfur pairs. To minimize the influence of indoor sulfur sources, we excluded 22 observations where the participant reported that smoking had occurred in the home during the 2-week period, and 6 cold season observations from homes with kerosene heaters (Koutrakis et al. 1992). We also removed 11 observations where the I/O sulfur ratio was greater than 1.05, which indicated an indoor sulfur source. We included ratios between 1.00 and 1.05 to account for imprecision in the sulfur measurements. We also excluded 6 observations where the participants reported that the home was "smoky from cooking" for \geq 10 hours during the 2-week sampling period, since window opening and other behaviors during such periods may not represent typical conditions. To minimize the influence of extreme values on the $F_{\rm inf}$ models, we also removed one distant outlier ($F_{\rm inf}$ more than 3 interquartile ranges below the community- and season-specific 25th percentile) in Los Angeles and New York. These exclusions left 526 I/O sulfur pairs (from 353 homes) for analysis. ### Calculation of Contributions to Indoor Concentrations For each valid $F_{\rm inf}$ observation, we estimated the infiltrated $(PM_{2.5}^{\rm inf})$ and indoor-generated $(PM_{2.5}^{\rm ig})$ contributions to the 2-week average indoor $PM_{2.5}$ concentrations based on the measured $PM_{2.5}$ concentrations outdoors $(PM_{2.5}^{\rm outdoor})$ and indoors $(PM_{2.5}^{\rm indoor})$ and the home-specific estimate of $F_{\rm inf}$ (Allen et al. 2004): $$PM_{2.5}^{\text{inf}} = F_{\text{inf}} \times PM_{2.5}^{\text{outdoor}} \tag{1}$$ $$PM_{2.5}^{ig} = PM_{2.5}^{indoor} - PM_{2.5}^{inf}$$ (2) When $PM_{2.5}^{\text{inf}} > PM_{2.5}^{\text{indoor}}$, we set $PM_{2.5}^{\text{inf}} = PM_{2.5}^{\text{indoor}}$ and $PM_{2.5}^{\text{ig}} = 0$. #### **Model Development** We developed models using two approaches. In the first approach we 1) calculated the correlations between each predictor and F_{inf} , 2) offered the significantly (p<0.1) correlated predictors into a stepwise linear regression (p<0.30 to enter; p<0.10 to remain) with $F_{\rm inf}$ as the dependent variable, and 3) removed predictors that contributed less than 0.01 to the model R². In the second approach, we 1) calculated the correlations between each predictor and F_{inf} , 2) entered the highest-correlated predictor into a model with F_{inf} as the dependent variable, 3) calculated the model residuals, 4) calculated the correlations between the model residuals and all remaining predictors, 5) added the highest-correlated predictor as an additional predictor in the model with $F_{\rm inf}$ as the dependent variable, and 6) repeated steps 3-5 until the model included all variables with p<0.10 that contributed at least 0.01 to the model R². Under both methods, we only included predictors for which the coefficient's sign was consistent with physical processes (e.g., positive coefficients for window opening). Since the models were developed to predict F_{inf} , we did not account for possible dependence between measurements made in the same home or in the same community. In the preliminary community-specific models we required that every variable have at least 4 non-zero observations to be included in the model. #### References - Allen R, Wallace L, Larson T, Sheppard L, Liu LJS. 2004. Estimated hourly personal exposures to ambient and nonambient particulate matter among sensitive populations in Seattle, Washington. J Air Waste Manag Assoc 54(9):1197-1211. - Koutrakis P, Briggs SLK, Leaderer BP. 1992. Source Apportionment Of Indoor Aerosols In Suffolk And Onondaga Counties, New-York. Environ Sci Technol 26(3):521-527. Supplemental Material Table 1. Comparison of selected home and resident characteristics between the full MESA Air cohort and the subgroup selected for home indoor/outdoor (I/O) sampling. | Community | Total number of homes | | Single family /
free standing
home ^a | | Central AC used in the past July ^b | | Usually had windows open in the past summer ^c | | HEPA filter /
electrostatic
precipitator used ^d | | Smoking inside the home in the past year ^e | | |---------------|-----------------------|--------------|---|----------------|---|----------------|--|----------------|--|----------------|---|----------------| | Community | All
Homes | I/O
Homes | % of All
Homes | % of I/O Homes | % of All
Homes | % of I/O Homes | % of All
Homes | % of I/O Homes | % of All
Homes | % of I/O Homes | % of All
Homes | % of I/O Homes | | Baltimore | 721 | 56 | 62 | 64 | 64 | 54 | 64 | 68 | 6 | 7 | 19 | 5 | | Chicago | 1,146 | 46 | 41 | 54 | 56 | 67 | 75 | 74 | 16 | 24 | 16 | 0 | | Los Angeles | 1,176 | 89 | 71 | 78 | 42 | 45 | 89 | 84 | 6 | 8 | 10 | 4 | | New York | 1,103 | 39 | 7 | 3 | 6 | 0 | 90 | 92 | 3 | 5 | 20 | 8 | | Rockland | 100 | 18 | 71 | 72 | 55 | 39 | 89 | 94 | 11 | 17 | 13 | 6 | | St. Paul | 879 | 50 | 71 | 82 | 47 | 54 | 86 | 80 | 8 | 6 | 21 | 4 | | Winston-Salem | 890 | 55 | 89 | 98 | 88 | 93 | 36 | 27 | 12 | 16 | 21 | 0 | | Total | 6,015 | 353 | 55 | 68 | 49 | 56 | 75 | 72 | 9 | 11 | 17 | 4 | Based on responses provided on the MESA Air Questionnaire at study entry. Questions were worded as follows: ^a "What type of building do you live in?" = Single-family or free-standing. b "What type of air conditioning does your residence have?" = Central AC + "How often was the air conditioning used in the past July?" ≥ A few days a month ^c "How many windows did you usually have open in the past summer?" = All or Some ^d "What type of air cleaner/filter is used in your residence?" = HEPA filter and/or electrostatic precipitator ^e "Did anyone smoke in your residence in the past 12 months (this includes you)?" = Yes $Supplemental\ Material\ Table\ 2.\ Mean\ (\pm\ SD)\ 2-week\ PM_{2.5}\ concentrations\ and\ estimated\ indoor\ and\ outdoor\ contributions\ to\ indoor\ PM_{2.5}$ concentrations by community and season. | Community | Season ^a | Observations (Homes) ^b | Outdoor
Sulfur
(µg/m³) | Indoor
Sulfur
(µg/m³) | Outdoor
PM _{2.5}
(µg/m ³) | Indoor
PM _{2.5}
(µg/m ³) | Indoor-
Generated
Indoor PM _{2.5}
(µg/m³) | Infiltrated
Indoor PM _{2.5}
(µg/m³) | Infiltrated PM _{2.5} Contribution to Indoor PM _{2.5} (%) | |--------------|---------------------|-----------------------------------|------------------------------|-----------------------------|--|---|---|--|--| | Baltimore | Cold | 48 (41) | 1.19 ± 0.24 | 0.63 ± 0.23 | 11.8 ± 2.5 | 7.9 ± 2.9 | 1.9 ± 2.3 | 6.0 ± 2.0 | 80.3 ± 20.1 | | Daitimore | Warm | 39 (36) | 2.22 ± 0.52 | 1.29 ± 0.56 | 16.8 ± 3.7 | 12.5 ± 5.7 | 2.7 ± 3.6 | 9.7 ± 4.3 | 80.3 ± 17.9 | | Chicago | Cold | 40 (33) | 1.00 ± 0.25 | 0.56 ± 0.24 | 13.3 ± 3.3 | 9.1 ± 4.2 | 2.4 ± 4.3 | 6.7 ± 2.0 | 80.9 ± 22.8 | | Cincago | Warm | 28 (27) | 1.39 ± 0.37 | 0.87 ± 0.45 | 14.0 ± 3.0 | 12.1 ± 6.0 | 3.6 ± 4.6 | 8.5 ± 3.7 | 74.8 ± 19.5 | | Los Angeles | Cold | 80 (71) | 0.87 ± 0.59 | 0.66 ± 0.51 | 17.2 ± 8.1 | 13.9 ± 8.6 | 2.8 ± 4.9 | 11.1 ± 5.7 | 84.9 ± 18.7 | | Los Aligeles | Warm | 53 (52) | 1.51 ± 0.53 | 1.19 ± 0.55 | 16.0 ± 2.6 | 13.7 ± 3.7 | 1.5 ± 2.1 | 12.2 ± 3.5 | 89.4 ± 12.5 | | New York - | Cold | 24 (23) | 1.29 ± 0.56 | 0.91 ± 0.24 | 16.2 ± 6.8 | 16.4 ± 10.7 | 5.4 ± 9.4 | 11.0 ± 2.8 | 76.1 ± 22.5 | | | Warm | 26 (23) | 1.68 ± 0.47 | 1.52 ± 0.46 | 15.7 ± 3.2 | 17.3 ± 6.5 | 3.2 ± 6.6 | 14.2 ± 3.5 | 86.5 ± 17.8 | | Rockland | Cold | 12 (11) | 0.89 ± 0.12 | 0.49 ± 0.15 | 9.8 ± 2.8 | 7.7 ± 2.7 | 2.3 ± 2.0 | 5.4 ± 1.9 | 71.3 ± 19.6 | | Rockialiu – | Warm | 11 (11) | 2.05 ± 0.47 | 1.41 ± 0.56 | 17.0 ± 3.8 | 14.3 ± 6.5 | 3.2 ± 4.7 | 11.1 ± 4.1 | 79.4 ± 17.9 | | St. Paul | Cold | 56 (45) | 0.69 ± 0.15 | 0.35 ± 0.18 | 10.0 ± 3.5 | 7.2 ± 5.9 | 2.8 ± 5.1 | 4.4 ± 2.0 | 72.5 ± 23.6 | | St. Paul | Warm | 23 (23) | 0.90 ± 0.32 | 0.56 ± 0.30 | 9.8 ± 1.7 | 7.3 ± 2.6 | 1.2 ± 1.3 | 6.1 ± 3.1 | 82.4 ± 19.6 | | Winston- | Cold | 47 (40) | 1.18 ± 0.27 | 0.60 ± 0.22 | 12.6 ± 2.8 | 9.3 ± 4.1 | 3.0 ± 3.4 | 6.3 ± 2.4 | 72.4 ± 20.7 | | Salem | Warm | 39 (36) | 2.38 ± 0.63 | 1.00 ± 0.43 | 18.6 ± 3.8 | 11.9 ± 5.0 | 4.1 ± 4.1 | 7.8 ± 3.1 | 69.6 ± 21.1 | | All - | Cold | 307 (264) | 0.98 ± 0.43 | 0.60 ± 0.35 | 13.5 ± 5.8 | 10.4 ± 7.0 | 2.8 ± 4.8 | 7.6 ± 4.3 | 78.3 ± 21.5 | | | Warm | 219 (208) | 1.76 ± 0.69 | 1.12 ± 0.55 | 15.8 ± 3.9 | 12.8 ± 5.6 | 2.7 ± 4.0 | 10.1 ± 4.3 | 80.7 ± 18.9 | ^a Cold and warm seasons defined as \leq 18 °C and >18 °C, respectively, during the 2-week I/O sampling period ^b Some homes were monitored twice in the same season. # Supplemental Material Table 3. Main MESA Air Questionnaire questions used to derive predictors in the generalizable and 2-week specific infiltration efficiency models. | Predictor | Questions | Response(s) ^a | | | | | |---|--|---|--|--|--|--| | | Do you use air conditioning in your residence? | Yes | | | | | | Central AC used a few days in the past July | What type of air conditioning does your residence have? | Central A/C | | | | | | | How often was the air conditioning used in the past July? | A few days a month | | | | | | | Do you use air conditioning in your residence? | Yes | | | | | | Central AC used > ½ time in the past July | What type of air conditioning does your residence have? | Central A/C | | | | | | | How often was the air conditioning used in the past July? | More than half the days of the month, but less than daily OR Almost daily (thermostat use also) | | | | | | | Do you use air conditioning in your residence? | Yes | | | | | | Central AC used at all in the past July | What type of air conditioning does your residence have? | Central A/C | | | | | | | How often was the air conditioning used in the past July? | A few days a month OR More than half the days of the month, but less than daily OR Almost daily (thermostat use also) | | | | | | Home has forced air heat | What are the heating sources used in your residence? Please check all that are used at least once a month. | Forced air (vents) | | | | | | Home has double pane windows | Does your residence have double pane windows? | Yes | | | | | | Windows ones >1/ time in the next summer | In summer (Jun – Aug) how many windows did you usually have open? | All OR Some | | | | | | Windows open $\geq \frac{1}{2}$ time in the past summer | In summer (Jun – Aug) how often did you open windows? | More than half the days of the month, but less than daily OR Almost daily | | | | | | Windows anon >1/4 time in the next winter | In winter (Dec – Feb) how many windows did you usually have open? | All OR Some | | | | | | Windows open $\geq \frac{1}{2}$ time in the past winter | In winter (Dec – Feb) how often did you open windows? | More than half the days of the month, but less than daily OR Almost daily | | | | | ^aHomes with these responses were coded as 1; homes with other responses were all coded as 0. # Supplemental Material Table 4. Infiltration Questionnaire questions used to derive predictors in the 2-week specific infiltration efficiency models. | Predictor | Questions | Response(s) ^a | | | | |--|---|---|--|--|--| | | Does your home have air conditioning? | Yes | | | | | Central AC used ≥ 6 days during sampling | What type of air conditioning does your residence have? | Central A/C | | | | | | How often did you use air conditioning in the past 12-14 days? | 6 – 10 days OR 11-14 days | | | | | | Does your home have air conditioning? | Yes | | | | | Central AC used \geq 11 days during sampling | What type of air conditioning does your residence have? | Central A/C | | | | | | How often did you use air conditioning in the past 12-14 days? | 11-14 days | | | | | | During the past 12-14 days, was an air cleaner/filter (stand-alone or central) used in your home? | Yes | | | | | HEPA or ESP used ≥ 11 days during sampling | What kind of air cleaner did you use? | HEPA filter OR Electrostatic precipitator | | | | | | How often was the air cleaner/filter used in the past 12-14 days? | 11-14 days | | | | | Windows open 6-10 days during sampling | During the past 12-14 days, how often did you have windows open? | 6-10 days | | | | | Windows open ≥ 11 days during sampling | During the past 12-14 days, how often did you have windows open? | 11-14 days | | | | | _ | | | | | | ^aHomes with these responses were coded as 1; homes with other responses were all coded as 0. Supplemental Material Figure 1. Infiltration efficiency vs. average outdoor temperature during the 2-week sampling period among a) homes not using air conditioning and b) homes using air conditioning. Supplemental Material Figure 2. Comparisons of measured infiltration efficiencies (x-axes) with values predicted from a leave-one-community out cross validation (y-axes) for the generalizable models shown in Table 2. White and black circles represent cold and warm seasons, respectively; lines represent 1:1.