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Supplemental Experimental Procedures 

Theoretical model for single Kinesin: 

The mechanoenzyme Kinesin moves processively toward the plus end of a microtubule by taking 
8-nm steps. The dependence of the velocity V on ATP is successfully reproduced by Michaelis-
Menten kinetics that describe binding of a kinesin head, denoted by K, to an ATP molecule and 
the subsequent hydrolysis according to: 

                                                 (1) 
 
, where kon (koff) are rate constants for binding (unbinding) of an ATP by the kinesin head,   kcat is 
the rate constant of catalysis or hydrolysis of ATP, and Pi is the phosphate ion which is released 
upon hydrolysis. In the above expression reversal of ATP hydrolysis has been ignored since its 
contribution is very small [1]. This leads to the Michaelis-Menten expression for the velocity V of 
the motor moving along the  microtubule  
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where Vmax is the maximum kinesin velocity at saturating ATP, and is given by the expression  
                                                                      Vmax = kcatdε(F) .                                           (2.1) 
 
Here,  d = 8 nm is the step size, F is the load, and [ATP] is the ATP concentration. ε(F) is the 
load-dependent coupling efficiency between ATP hydrolysis and mechanical stepping. It is 
independent of ATP concentration. In order to interpolate between 100% efficiency at no load 
and zero efficiency at the stalling force Fo , the following form for ε(F) has been chosen[3]: 
 
                                                                      ε(F) = 1-(F/Fo)2 .                                           (2.2) 
 
Above, Km  is the Michaelis-Menten constant, given by the expression 
 
                                                                      Km = (kcat +koff)/kon     .                                                    (2.3) 
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The enzymatic properties of molecular motors are affected by any applied load. This load 
dependence is modeled by including it in the rate constants. Kinesin experiments indicate that 
increasing load results in a decrease in Vmax and an increase in Km. The decrease in Vmax is 
accounted for by the coupling efficiency, which allows kcat to be taken to be load independent. To 
account for the observed increase in Km, either kon should decrease or koff should increase (or both) 
with increasing load. Here it was assumed that koff  increases with increasing load, following [3]:   
 
                                                                        koff = k0 off exp[Fdl/kBT],                               (2.4) 
 
where kB is the Boltzmann’s constant, T = 300 K is the temperature in Kelvin, k0 off = 55 sec-1, and 
d1=1.6 nm. 
                                                                 
A Monte-Carlo implementation of the above model correctly reproduces the experimentally 
known dependence of velocity on applied load and ATP concentration [3] however it doesn’t 
model the dependence of run length on applied load and ATP concentration. To develop a 
complete Monte-Carlo description, which also captures the experimentally known processivity of 
Kinesin, we make use of the model for Kinesin described in [2]. According to this model, Kinesin 
can detach from the microtubule from two different states, which occur before and after ATP 
binding. The probability of detachment from the state before ATP binding is given by 
P1=B/[ATP] per cycle, where B is a constant. The probability of detachment from the state after 
ATP binding  is given by P2= (1/A)exp(Fδl/kBT), where A is the maximum number of steps that 
kinesin takes under zero load before detaching from microtubule. Therefore, the probabilities of 
detachments from these two different routes (per unit time) are given by the expressions:  
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The proccessivity L reflecting the two different routes for dissociation of Kinesin from the 
Microtubule is given by the following expression [2] 
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Equations (2) and (6) give a very good fit to the known experimental data [2] for the following 
parameters:  kon = 2 × 106 M–1•sec–1, and kcat = 105 sec–1 , K0 off=55 sec–1, B=0.029 µM, A=107,  
dl=1.6nm,δl=1.3nm  and Fo = 8 pN.  Unless explicitly stated otherwise, simulations were done at 
saturating ATP, i.e. [ATP]=3mM. 
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 Monte-Carlo algorithm for single Kinesin: 

We describe the states of single Kinesin on the microtubule by a two-state variable s (where s is 0 
or 1): s=0 represents the state without an ATP molecule, and s=1 represents a state with kinesin 
bound to an ATP molecule. The procedure updates the state of the motor(s) for all times t 
between 0 and tmax in increments of ∆t. Note that here the time step ∆t is chosen in such a way 
that it is sufficiently smaller than the typical time scale over which the fastest process in the 
mechano-chemical cycle occurs. The update procedure for each configuration is described below. 
 
A. Initial condition: t=0, s=0, x=0, where x is the position of the motor on the microtubule. 
 
B. Updating procedure: Repeat the following steps up to tmax in increments of ∆t. 
 
(i)  if t > tmax goto step C  
(ii) Detachment of Kinesin: calculate Pdetach1 and Pdetach2 . First try detachment with probability 
Pdetach1. If detachment occurs, goto step C, else try detachment with probability Pdetach2. If 
detachment occurs goto step C else goto step (iii)  
(iii) Binding/Unbinding of ATP: Switch the value of s with probability Pon =kon[ATP]∆t 
or Poff =koff∆t, depending on whether the current value of s is 0 or 1 respectively. At saturating 
ATP levels and moderate loads, the binding of ATP is the fastest process. At saturating ATP (say 
3mM) ATP binding would take typically 10-4

 s provided kon=2×106 M-1.S-1. Therefore we choose 
∆t=10-5 s [3]. 
(iv) Hydrolysis and stepping: If s=1 after step (iii), hydrolysis occurs with probability Pcat =kcat∆t. 
After hydrolysis, s=0 and x is changed to x+d with probability ε(F) 
 
C. Calculation of Run length and Velocity:  
Run length is the current value of x. Velocity is obtained dividing current position x by the 
current time t.  
 
The results obtained from this improved Monte-Carlo algorithm have been plotted in Supplement 
Fig. S1 and Supplement Fig. S2, along with the original theoretical description provided in [2]  
that matches the single-molecule experiments in [2] quite well for the following parameters:  kon = 
2 × 106 M–1•sec–1, and kcat = 105 sec–1 , K0 off=55 sec–1, B=0.029 µM, A=107,  dl=1.6nm,δl=1.3nm  
and Fo = 8 pN, as described earlier in this supplement.  As expected, our Monte-Carlo 
Simulations reproduce the original theory quite well. 
 
Rescaling of single motor model for different stall forces  Our simulated motor reproduces 
reported [2] single-molecule behavior for F0=8 pN. However, frequently, observed experimental 
stall forces are different.  To rescale our model for different values of stalling force F0 we use 
following form of probability P2 (see equation 4) 
                      
                                                            P2= (1/A)exp((8/F0)(Fδl/kBT)) 
 
This new form of probability P2 reduces the runlength of a single motor by ~70% at half of the 
stalling force for any F0. 
 



Current Biology, Volume 18 

 4

              

 

Monte Carlo Algorithm for the multiple motor model: 

A detailed description of the sequence of events in the multi-motor Monte-Carlo simulation is 
provided below; however the basic sequence of events is as follows. For each time step, we visit 
each of the N motors and determine their tentative states (attached or detached) and positions. To 
calculate the tentative state and position of a motor which is currently unattached, we allow it to 
attach with a probability determined by the assumed ‘on-rate’ within a region which can be 
explored by the unattached motor. To determine the tentative state and position of a motor which 
is currently attached, we explore all the three possibilities: it can remain stationary, advance, or 
detach. To determine what the motor does, we first calculate the force it experiences. Force felt 
by a given motor depends on the position relative to the position of the bead. The method of 
calculation of bead position in Model A and model B is explained below. Once the bead position 
is calculated, we know the force the motor in question is experiencing.  We then determine if it 
steps, remains stationary, or detaches, where the probability of each event is determined from the 
single-kinesin model. Once we have determined the tentative states and positions of all N motors, 
we update the states and positions of all motors simultaneously. We calculate the new position of 
the bead using the new states and positions and time step is finished. We then record the number 
of motors engaged, their locations, and the overall location of the cargo.   
 
We put a number of motors, N, on the cargo, where the motor heads are attached to the cargo via 
a linkage (stalk) of length l. In this case, l is an idealized motor with a natural length of 110 nm, 
and exerts a restoring force only when it is stretched beyond the natural length. It has no 
compressional rigidity, i.e. it buckles without resistance when compressed. These linkages 
are localized at a single spot on the cargo. Motors bound to a microtubule walk on a lattice, where 
each binding site of the motors heads are 8 nm apart. The update procedure for each configuration 
of our multiple motor model is described below: 
 
Initial condition: We denote the current position of the cargo by x, and current time by t, and the 
number of engaged motors by e (motors whose heads are actually bound to microtubule). Let us 
assume we want to start with the initial condition where only n motors are initially attached to the 
microtubule out of total N number of motors on the cargo. We hold the cargo’s center of mass at 
position x=xhold above the microtubule lattice and allow a number of motors n to attach to the 
microtubule. The motors are allowed to attach to any binding site on the microtubule which is 
within distance l on either side of the cargo. Once motors are attached to the microtubule we 
calculate the initial position of the cargo’s center of mass xstart which depends on the position of 
the motors heads, length of linkage, stiffness of linkage and applied load F (described later in this 
section). Thus at t=0, x=xstart and e=n. 
  
Updating procedure: We update the state of the model in steps of ∆t, up to time tmax, where the 
basic time step ∆t is identical to that used in the single molecule model. At any time step t, the 
update procedure consists of following steps: 
 
i)  If t > tmax, goto step (vi) 
ii)  Determine the tentative states and tentative positions of the motors: We determine the 
tentative states and tentative positions of all the N motors in the following way. 
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If a motor is in a detached state, then motor doesn’t feel any load. However if the motor is 
attached to the microtubule, forward or backward load Fi felt by the ith motor is obtained by 
multiplying the extension of its linkage ∆li by the linkage stiffness k. We describe the nucleotide-
states of motor by a two-state variable si (where si is 0 or 1). si =0 represents the state of ith motor 
without an ATP molecule at time step t,  and si=1 represents ith motor binding an ATP molecule 
(i=1, 2,…N). In the following paragraph xi(t) denotes the state of the  ith motor at time t and 
xi(t,Tmp) denotes the calculated tentative position of the ith motor at time t, i.e. the position at 
which the ith motor would be at time step t+1. Similarly, Si(t) denotes the state (attached/detached) 
of the ith motor at time t, and Si(t,Tmp) denotes the calculated tentative state of the ith motor at 
time t,  i.e.  the state in which the  ith motor would be at time step t+1. Here,  Si(t)=0 signifies that 
the ith motor is in detached state at time t, and Si(t)=1  signifies that the ith motor is in attached 
state at time t.  
 
Tentative states and tentative positions of the detached and attached motors are determined 
according to following rules.  
 
A1. Determining the tentative state and tentative position of a detached motor: if the selected 
motor is in a detached state, it gets an opportunity to (re)attach to the microtubule. The motor is 
allowed to attach to any binding site on the microtubule, with probability Pa, which is within 
distance l on either side from the center of mass of the cargo. If it does set Si(t,Tmp)=1 and go to 
the next motor (if any). 
A2. Determining the tentative state and tentative position of a attached motor: tentative states and 
tentative positions of attached motors are calculated in the following steps (B1 to B7) 
 
B1. calculatation of koff:  koff  is calculated using equation (2.4) provided  the load felt by motor is 
in a backward direction. For forward load we use Fi=0 in equation (2.4) because a forward load 
does not alter the kinetic cycle of kinesin and therefore the motor moves as if it was moving 
under zero load [4]. 
 
B2. Calculation of P2: P2 is calculated using the expression (1/A)exp(Fiδl/kBT) irrespective of the 
direction of the load (i.e. forward or backward) on the motor. We assume that a forward or 
backward load would have similar effect on detachment kinetics.  
 
B3. Calculation of ε(Fi): ε(Fi)  is calculated using equation (2.2) for backward loads Fi≤ F0.  For 
backward load greater than F0 (i.e. load greater than stall) ε(Fi) =0. Again, a  forward load does 
not alter the kinetic cycle of kinesin and therefore the motor moves as if it was moving under zero 
load; therefore we put Fi=0 for forward loads in equation(2.2)   
 
B4. Pstep is calculated using values of koff  and ε(Fi) in equation (2.3) and (5). 
 
B5. Detachment kinetics: calculate Pdetach1 and Pdetach2  using equation (3) and (4). First try 
detachment with probability Pdetach1. If detachment occurs then set si=0, Si(t,Tmp)=0 and go to 
next motor (if any), else try detachment with probability Pdetach2. If detachment occurs set si=0, 
Si(t,Tmp)=0  and go to next motor (if any), else goto step (B6).   
 
B6. Binding/Unbinding of ATP: switch the value of si with probability Pon =kon[ATP]∆t or 
Poff=koff∆t, depending on whether the current value of si is 0 or 1 respectively.  
 
B7.  Hydrolysis and stepping: If si=1, after step (B6), hydrolysis occurs with probability Pcat 
=kcat∆t. After hydrolysis si=0 and and xi(t,Tmp) is set to xi(t)+d with probability ε(Fi). If motor 
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does not hydrolyze ATP or fails to step with probability ε(Fi), after ATP hydrolysis then we 
check whether Fi≥F0. If Fi≥F0 , then we implement the detachment kinetics of kinesin under super 
stall conditions by allowing the motor to detach with probability Pback. We choose Pback=2 s-1, 
which was previously experimentally determined for kinesin [5]. If detachment occurs, then set 
si=0, Si(t,Tmp)=0  and go to next motor (if any). We again take the detachment kinetics under 
super stall to be independent of the direction of the load.  
 
iii)  Updating states and tentative positions of the motors: Once we have calculated the tentative 
state Si(t,Tmp) and tentative position xi(t,Tmp) for all N motors,  we update the states and 
positions of all the N motors simultaneously. To do this, We set Si(t+∆t)= Si(t,Tmp) and xi(t+∆t)= 
xi(t,Tmp) for all i (i=1, 2,…N). 
 
(iv) Calculating number of engaged motors: calculate e, If e=0 then record the final position of 
the cargo xfinal=x, and go to step (vi), else go to step (v). 
 
(v) Updating position of the cargo: the method for calculating the position of the center of mass of 
the cargo x after updating the motor is outlined below for Model A and Model B. 
 
Model A:  In model A, the position of the bead is determined by balancing the externally applied 
force F (if any) with the force that each of the bound motors supports. To do this, first find out the 
position of the two outermost motor heads, say xmax and xmin. (For a cargo driven by single motor 
xmax=xmin). Check if the cargo is loaded or unloaded (i.e. F=0 or F≠0). If the cargo is unloaded go 
to (A), else go to (B). 
 
A. Unloaded cargo (F=0): if xmax-xmin ≤ 2l (where l is the natural length of linkage) this would 
mean that none of the linkages are stretched. In this case the position of the center of mass of the 
cargo is given by x=(xmax+xmin)/2, which essentially captures the fact that for a cargo driven by a 
single motor, when unloaded, the center of mass of the cargo on the average is likely to be found 
at the position of motor head, and for a cargo driven by multiple motors, when it is unloaded and 
linkages are not stretched, the center of mass of the cargo on the average will be found between 
the two outermost motor heads. 
If xmax-xmin > 2l then some of the linkages are stretched; go to B1 
 
B. Loaded cargo (F≠0): Any non-zero load is supported by the motor(s), which causes the 
linkages to stretch. 
B1. Calculate the new extension of the linkage for each motor, using the current bead position 
and the new position of the motor after stepping. 
B2. Calculate the equilibrium extension of each linkage. The equilibrium extension of each motor 
linkage is obtained by requiring that the net force on the cargo is zero. Use the equilibrium 
extension of any linkage to calculate the new position of the center of mass of the cargo. 
 
Model B: In model B, the position of the bead is determined by an externally applied load (if 
any), as well as thermal noise. In the absence of any force, the bead would execute a Brownian 
motion due to the thermal noise. Over a time interval of ∆t, the displacement of the bead due to 
these thermal kicks can be drawn from a normal distribution with a mean-square displacement 
2D∆t, where D is the diffusion constant of the bead. The diffusion constant D is related to the 
friction constant ξ by the Einstein relation ξ=kBT/D, reflecting the influence of viscous drag on 
the bead’s motion. We neglected the thermal motion of the springs; our simulation is 
dominated by the thermal motion of the bead. Our springs are "special springs" in that 
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they exert a restoring force only when they are stretched. For the bead, the friction constant 
ξ is related to viscosity of the medium η and radius r of the bead by the relation  
                                                      ξ=6πηr. 
If the bead were subject to a net force f  then this would cause the bead to move with velocity 
vdrift=(f/ξ). To calculate the net motion of the bead over time interval ∆t we superimpose the 
deterministic drift xdrift=vdrift.∆t =(f/ξ)∆t on the random displacements xrandom where the 
displacements are  drawn from a normal distribution with mean square displacement 2D∆t [6]. To 
summarize, the bead displacement at time t and t+∆t are related by: 
 

tfxxxxtxttx randomtdriftrandom ∆++=++=∆+
ξ

)()(  

The net force f on the bead is given by 
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where fi is the restoring force exerted by  ith motor on the bead, whose magnitude depends on the 
extension of ith linkage, and is given by k.∆li. 
 
vi) Calculation of travel distance: xfinal is the current value of x. The travel distance of the cargo is 
given by xfinal-xstart.   
In model B, any non-zero external force initially can cause the bead to drift in the direction of the 
force. Therefore, in order to measure the travel distance correctly we set xstart after 0.2 
milliseconds in Model B instead of at t=0. 
 

Average velocities and average walking distance (persistence) in steady-state model: 

In the steady-state model [7], the  average velocity of a cargo is given by 
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Where Pn denotes the probability that the cargo is bound to the microtubule by n motors 
and vn is is the corresponding velocity.  Pn is given by expression: 
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Above, N denotes the total number of motors bound to the cargo, πn is the motor 
(re)attachment rate or ‘on rate’ when n motors are bound to microtubule and εn  is the 
detachment rate or ‘off rate’ when n motors are bound to the microtubule.  
 
The average walking distance or persistence is given by the expression [7] 
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vn, εn and πn are related to the single motor velocity v, ‘off rate’ ε and ‘on rate’ πad by the 
expressions: 
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Here Fs is the stalling force of a single motor, Fd is the detachment force for a single  
motor, and F is externally applied load. Further details of the steady-state model 
(equations (8)-(12)) can be found in [7]. 
 
 

Additional data for many figures discussed in the main text: 

Figure 2: 
Fig. 2A) The data for stepsize distribution was obtained from 50 configurations, each 
running for a maximum time of  100 sec (1 time step=10-5 sec), where each configuration 
was started with the initial condition that  both motors are attached to the microtubule. 
Simulation for each configuration was stopped when either all motors had detached from 
microtubule, or 100 seconds had passed. Applied load =3 pN 
 
Fig 2B) The data for stepsize distribution was obtained from 20 configurations, each 
running for a maximum of 100 sec (1 time step=10-5 sec), where each configuration was 
started with the initial condition that both motors are attached to the microtubule.  
Simulation for each configuration was stopped when either all motors had detached from 
microtubule or 100 seconds had passed. For 10 configurations, the bead was moving 
under an external load of 3pN, and for another 10 configurations the bead was moving 
under an external load of 4pN (this was done to match experimental conditions). 
 
Fig 2C) The data was obtained from 10 configuration, where each configuration was 
running for 100 sec. Simulation for each configuration was stopped when all motors had 
detached. External load force=0 pN. 
 
Fig 2D)  The data was obtained from 10 configuration, where each configuration was 
running for a maximum time of 100 sec. Simulation for each configuration was started 
with the initial condition that both motor are attached randomly to the  microtubule, and 
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simulation was stopped when all motors had detached. External load force=0 pN. 
 
 
 
 
 
Figure 3: 
Fig 3C. Original ‘in silico’ data was generated for 5000 configurations, where each 
configuration ran for a maximum time of 100 sec. Simulation for each configuration was 
started with the initial condition that both motor were attached randomly to the  
microtubule and simulation was stopped when all motors had detached. (On rate for each 
motor was 5s-1 and trap stiffness was 0.09205 pN/nm ) 
 
Figure 4: 
Fig4 A B. As already indicated in the main text, the initial and final conditions are same 
as Fig 5. The average velocity was calculated using the velocities calculated over a time 
window of 0.5 sec in the steady state. However for the single motors, the average velocity 
was calculated over the entire run-length. 
 
 
Figure 5: 
Fig 5A. Monte Carlo results were obtained by averaging over 1000 samples, each having 
a duration of 100 s (1time step=10-5s). Simulation was started with the initial condition 
that all motors were randomly attached to the microtubule, and simulation was stopped if 
all motors had detached.  
 
Fig 5B. Same as Fig 5A; Monte Carlo results were obtained by average over 1000 
samples each having a duration of 100 s (1time step=10-5s). Simulation was started with 
the initial condition that all motors are randomly attached to the microtubule and 
simulation was stopped if all motors had detached.  
 
Fig 5C. Same as Fig 5A; Monte Carlo results were obtained by average over 1000 
samples each having a duration of 100 s (1time step=10-5s). Simulation was started with 
the initial condition that all motors are randomly attached to the microtubule and 
simulation was stopped if all motors had detached.  
 
Fig 5D. Same as Fig 5A; Monte Carlo results were obtained by average over 1000 
samples each having a duration of 100 s (1time step=10-5s). Simulation was started with 
the initial condition that all motors are randomly attached to the microtubule and 
simulation was stopped if all motors had detached.  
 
Figure 6: 
Fig 6 A. There is no averaging here.  In this case a random configuration was chosen for 
each configuration. A configuration which had a long runtime was selected in each case, 
so that we could show that strain-gating sequence for a longer duration. 
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Fig 6B. Monte Carlo results were obtained by average over 1000 samples each having a 
duration of 100 s (1time step=10-5s). Initial and final condition same as Fig 6A. 
 
Fig 6C. Data for the force distribution was obtained from 1000 samples each having a 
duration of 100 s (1time step=10-5s). Simulation was started with the initial condition that  
all motors are randomly attached to the microtubule and simulation was stopped if all 
motors had detached.  
 
Figure 7: 
Fig 7A.  Monte Carlo results were obtained by average over 1000 samples each having a 
duration of 100 s (1time step=10-5s). Simulation was started with the initial condition that  
all motors are randomly attached to the microtubule and simulation was stopped if all 
motors had detached. Average velocity was calculated in the same way as in Fig 4. 
Fig 7B Same as Fig 7A 
 
 

On the term ‘strain gating’, and past studies investigating motor-motor 
coupling: 

 
There has been significant work (see e.g. [8]) investigating how the enzymatic cycles of 
two heads of a dimeric motor such as kinesin  are coordinated, so that they remain ‘out of 
sync’, in order to allow the motor to walk processively down a filament, undergoing 
multiple enzymatic cycles while having one head always bound to the filament. It seems 
clear that this is maintained through some form of ‘strain-gating’, where the internally 
generated load due to spatial separations between the two heads leads to appropriately 
staggered enzymatic cycles. This internally generated strain, controlling enzymatic 
cycles, is different from our externally generated load (due to a load applied to the 
cargo), yet it has a very similar effect, making the motors go through their enzymatic 
cycles at defined times with respect to each other. Other work by Diehl et al[9] 
investigated a situation very similar to the case of Guydosh and Block, because they 
investigated the role of linkage stiffness in allowing monomeric heads that were 
otherwise unprocessive to work together.  
 
A possible relationship to the "catch-bond" behavior reported by Guo and 

Guilford (PNAS, 2006): 
 
A reviewer of the manuscript pointed out an intriguing relationship between our findings 
and the acto-myosin system. Guo and Guilford [10] report that the life time of the 
actomyosin bond first increases with increasing load, and then decreases with increasing 
load after reaching a maximum at ~6 pN. There is likely some similarity between this 
catch bond behavior and kinesin' average life time on microtubule. We notice 
(Supplement, Fig S3) that the average binding time of kinesin on the microtubule starts 
increasing  on applying load greater than ~3 pN up to stall force (6 pN) and then it drops 
to 0.5 seconds after reaching stall force. The slight increase in processivity that we 



Current Biology, Volume 18 

 11

predict (around single motor stall, Fig 5D, main text) is due to this increased average 
binding time of the motor supporting a moderately high load.  One would see this effect 
for very stiff linkage. At very high load, or for a very weak linkage, the backward 
motions contribute significantly to the overall run-length and obscure the effect. Hence it 
is only observed at moderate loads. 
 

Supplemental References: 

1. Hackney, D.D. (1996). The kinetic cycles of myosin, kinesin, and dynein. Annu 
Rev Physiol 58, 731-750. 

2. Schnitzer, M.J., Visscher, K., and Block, S.M. (2000). Force production by single 
kinesin motors. Nat Cell Biol 2, 718-723. 

3. Singh, M.P., Mallik, R., Gross, S.P., and Yu, C.C. (2005). Monte Carlo modeling 
of single-molecule cytoplasmic dynein. Proc Natl Acad Sci U S A 102, 12059-
12064. 

4. Block, S.M., Asbury, C.L., Shaevitz, J.W., and Lang, M.J. (2003). Probing the 
kinesin reaction cycle with a 2D optical force clamp. Proc Natl Acad Sci U S A 
100, 2351-2356. 

5. Coppin, C.M., Pierce, D.W., Hsu, L., and Vale, R.D. (1997). The load dependence 
of kinesin's mechanical cycle. Proc Natl Acad Sci U S A 94, 8539-8544. 

6. Beausang, J.F., Zurla C, Finzi L, Sullivan L, and PC, N. (2007). Elementary 
Simulation of tethered Brownian motion. . Am. J. Phys. 75, 520-523. 

7. Klumpp, S., and Lipowsky, R. (2005). Cooperative cargo transport by several 
molecular motors. Proc Natl Acad Sci U S A 102, 17284-17289. 

8. Guydosh, N.R., and Block, S.M. (2006). Backsteps induced by nucleotide analogs 
suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci U S A 103, 
8054-8059. 

9. Diehl, M.R., Zhang, K., Lee, H.J., and Tirrell, D.A. (2006). Engineering 
cooperativity in biomotor-protein assemblies. Science 311, 1468-1471. 

10. Guo, B., and Guilford, W.H. (2006). Mechanics of actomyosin bonds in different 
nucleotide states are tuned to muscle contraction. Proc Natl Acad Sci U S A 103, 
9844-9849. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Current Biology, Volume 18 

 12

 
 
 

 
Figure S1. The Monte-Carlo model reproduces known single-molecule kinesin 
function Dependence of Velocity on load for [ATP]=2 mM (A) and [ATP]=5 µM (B); 
dependence of mean travel distance on load for [ATP]=2 mM (C) and [ATP]=5 µM (D). In 
each case, the open symbols show the data obtained from Monte-Carlo Simulation. The solid 
lines in A and B  were obtained using equation (2) by choosing the same parameter values as used 
in simulations and solid line in C and D were obtained using equation (6) by choosing the same 
parameter values as used in simulations.  The parameter values are  Fo = 8 pN, kon = 2 × 106 M–

1•sec–1, and kcat = 105 sec–1 , K0 off=55 sec–1, B=0.029 µM, A=107, dl=1.6nm,δl=1.3nm. Note that 
the solid curves are a good proxy for the single-molecule behavior, because they were previously 
shown (in [2]) to match single-molecule kinesin experiments extremely well. Monte Carlo 
results were obtained by averaging over 1000 samples each having a duration of 100 s 
(1time step=10-5s). 
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Figure S2. Effect of constant load on single kinesin’s mean velocity and travel 
length, at different ATP concentrations Dependence of Velocity (A) and Mean Travel 
(B) on ATP concentration for different loads. Open symbols show the data obtained from Monte-
Carlo Simulation. The solid velocity lines (in A) have been obtained by using equation (2) by 
choosing the same parameter values as used in simulations, while the travel-distance lines (in B) 
come from equation (6). The parameter values are same as in Supplement Fig. S1. Monte Carlo 
results were obtained by averaging over 1000 samples each having a duration of 100 s 
(1time step=10-5s). 
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Figure S3. Average time a single kinesin spends attached to the microtubule, as a 
function of load. This graph results from our simulations using the same parameter 
values as in Figure 5A (Model A, with a 6 pN stall). Note that essentially the same graph 
can be obtained entirely from single molecule in vitro experimental data, by using the 
experimentally determined processivity as a function of load (panel b, fig. 3, [2]) and 
velocity as a function of load (panel b, fig. 2, [2]):  for a given force, divide the mean 
processivity  by the mean velocity. This graph is important because it has ramifications 
for the effect of load on the number of engaged motors, in the multiple-motor case.  We 
note that the applied load affects the average number of engaged motors <n> (<n>  ≤  N). A 
previous steady-state model[7] predicted that <n> decreased monotonically with increasing force, 
but this is not true in our model. This is because <n> is determined by a competition between 
each motor’s ‘on’ rate and ‘off’ rate. The ‘on’ rate is independent of applied load (the unattached 
motors feel no load), but as we see in Fig S3, the ‘off’ rate in time combines effects of load on 
both velocity (stepping rate) and detachment probability per step (processivity) and is a non-
monotonic function of applied load. The number of configurations was the same as Figure 
5A, main text. 
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Figure S4. Predicted locations of 2, 3, and 4-motor stalls for Model B and Steady 
State model when the single-motor stall has been tuned to 4.8 pN. In our model, the 
one-motor stall is a free parameter, that we tune to match the relevant experimental data. 
Here, to quantitatively compare stalling force predictions for experiments and theory (see 
Fig 3, main text), we tuned the single-motor stall to be 4.8 pN. As discussed in the main 
text, the best way to compare theory and experiment is to simulate cargo motion and 
analyze the simulated traces in the same way that experiments are analyzed (Fig 3, main 
text). However, having done that, we note that using the runlength-force curves, we can 
predict the approximate values of the 2, 3, and 4-motor stalls by determining the location 
where the mean predicted travel goes to 0.008 µm, i.e. ~ 1 step of the motor. This graph 
allows comparison of a comparison of the Monte-Carlo Model B and the previously 
published steady state model with the experiments.  The parameter values for Model B 
are same as Figure 5A andB, except Fo = 4.35 pN. The parameter values for SS model are 
same as Figure 5 except  Fs = 5.1 pN. The number of configurations was the same as 
Figure 5B, main text. 
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Figure S5. Observation of clustering as a function of load: Distribution of the 
average separation between the locations that the two motors bind to the 
microtubule As external load is applied to a cargo moved by two 6 pN-stall kinesin 
motors  , each coupled to the cargo via a 0.32 pN/nm linkage, it is possible that load 
induces clustering of the motors, where the separation between the locations where the 
motors attach to the microtubule gets to be quite small. In the simulations, we are able to 
instantaneously observe the MT-binding locations of each motor, and here summarize the 
instantaneous difference in the positions of the two. The motors are each 110 nm long 
(unstretched), so the maximum difference between the two attachment locations is 
expected to be ~220 nm. We observe very similar behavior for both Model A (A)  and 
Model B (B).  For low applied load (1 pN; red bars) we observe no clustering, while there 
is moderate clustering at intermediate applied load(4pN; green), and strong clustering at 
high load (9 pN; blue), where the majority of the motors are within 8 nm of each other.  
Other parameter values are same as in Figure 5. Data was obtained from 100 samples 
each having a duration of 100 s. Simulation was started with the initial condition that 
both motors are randomly attached to the microtubule and simulation was stopped when 
one of the motor detaches.  
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 Figure S6. Clustering requires a high-stiffness linkage.  As in Fig. S5, we examine 
the separation between the MT-attachment locations of two motors. Here, the two motors 
are moving the cargo against 9 pN of externally applied load, but are coupled to the cargo 
by very weak springs (k=0.04 pN/nm, red bars), weak springs (k=0.08 pN/nm, green 
bars), or strong springs (k=0.32 pN/nm, blue bars). Strong clustering is observed for the 
strong springs, but not for the other two cases. Other parameter values are same as in 
Figure S5. Data was obtained from 100 samples each having a duration of 100 s. 
Simulation was started with the initial condition that both motors are randomly attached 
to the microtubule and simulation was stopped when one of the motor detaches.  
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Figure S7. Force-Persistence curves for cargos at different values of linkage 
stiffness, for 2 (A) and 3 (B) motors moving according to Model B. These graphs are the 
companions (and quite similar to) to the graphs reflecting the Model A predictions in the 
main text (Fig 5C and D). The parameter values are the same as for the Model A. The 
number of configurations was the same as for Fig 5C, main text.  
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Figure S8. Backward motion of the cargo’s center of mass due to motor detachment, 

for a cargo moved by a maximum of N=2 motors.   
(A) The average backward displacement of a cargo moving under 2 pN of externally 
applied load, as a function of linkage stiffness obtained from Model A. Parameters 
chosen for MC simulation are the same as in Figure 5A (main text) except for different k 
values. The simulation was started with the initial condition that both motors are 
randomly attached to the microtubule. Monte Carlo results were obtained by averaging 
over 1000 samples each having a duration of 100 s.  The simulation was started with the 
initial condition that both motors are randomly attached to the microtubule. Each run 
ends when either 100 seconds have passed or all the motors have detached. 
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 (B) Successful recovery after detachment obtained from Model A. After the forward 
motor detaches, the cargo’s center of mass moves back (with magnitude approximately 
that shown in A), though this also depends on applied load. Sometimes, once the 
detached motor reattaches and starts to move, and the cargo’s center of mass starts to 
advance,  one of the motors may again fall off before the cargo’s center of mass has 
‘recovered’ from the first detachment. The percentage of time motor doesn’t fall off the 
microtubule,  and thus recovery is successful, is shown in B. Parameters chosen for MC 
simulation are same as in Figure 5A except for different k values. Here, in contrast to in 
A), the simulation was started with initial condition that both motors are at same position 
on the microtubule so that they initially share the externally applied load equally.  Monte 
Carlo results were obtained by averaging over 1000 samples each having a duration of 
100 s. In contrast to in A), the simulation was started with initial condition that both 
motors are at same position on the microtubule so that they initially share the externally 
applied load equally. Each run ends when either 100 seconds have passed or all the 
motors have detached. 
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Figure S9. Percentage of cargos reaching steady state for different motor ‘on rates’.  
Here, when the simulation is started, the initial condition is that only one motor of (A) 
N=2 (B) N=3 and (C) N=4 is attached to the microtubule. For all N values (2, 3, and 4) 
and on-rates (1 sec-1, 2 sec-1, and 5 sec-1) used here, the mean number of motors engaged  
<n> is larger than 1, and so our initial conditions are  away from the steady state number 
of motors attached. It is therefore possible that the cargo detaches before reaching the 
appropriate steady state <n> value. We investigated how likely this was to occur for 
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different numbers of motors on the cargo. A particular trial was judged a ‘success’ if the 
cargo stayed attached to the microtubule for the mean time to steady state (or longer). For 
instance, for the case of N=2 motors, the time to reach steady state for an on-rate of 1 sec-

1  is approximately 1.25 sec (Fig. S14A, below, arrow on red curve). Thus, for (e.g.) Fig 
S9A (black curve) we show the percentage of cargos that stay attached for 1.25 seconds 
or longer. It can be seen that the particular choice of initial conditions may be important 
for low on-rates, because a substantial portion of the cargos fail to reach steady state, 
however this choice is largely irrelevant for a higher on-rate such as 5 sec-1 since almost 
all the cargos reach ‘steady state’. The parameter values same as Figure 5A (main text). 
Monte Carlo results were obtained by averaging over 1000 samples each having a 
duration of 1.5 s. Simulation end when either 1.5 seconds have passed or all the motors 
are detached. 
 

 
Figure S10. Strain Gating for Model B, for the case of two motors moving a cargo 
against an externally applied load Here, we show the average force that a motor 
attached to the cargo steps against in Model B, when the cargo experiences 9 pN of 
externally applied load, as a function of the stiffness of the linkage connecting the motors 
to the cargo. The initial and final conditions are identical to Figure 6A, main text, and this 
curve is the companion to the main-text curve for Model A (Fig. 6B, main text). The 
configurations were the same as for Fig. 6B, main text.  
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Figure S11. Force velocity curves from Model A for N=1, 2, 3 and 4 motors for linked 
with a linkage of stiffness k=0.04 pN/nm and without allowing detachment of motors. 
The parameter values are same as in Figure 4A except , B=0 µM, A=∞,  Pback=0 s-1 and 
Pa=100000 s-1 to ensure that motors remain attached to microtubule all the time. The 
simulation was started with the initial condition that all motors are randomly attached to 
the microtubule. The average velocity was calculated in same manner as in Figure 4A, 
main text. Monte Carlo results were obtained by averaging over 100 samples each having 
a duration of 100s. 
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Figure S12.  The effect of viscous drag on cargo transport, for cargos moved by  N=1 
(black), 2 (red), 3 (green) and 4 (blue) motors, with a single-motor stall force of 5 pN, as 
predicted by Model B (A) Mean persistence of the cargo as function of viscosity of the 
medium (B) Average velocity of the cargo as a function of the viscosity of the medium, 
for motors with an unloaded velocity of  ~0.6 µm/sec (chosen to match likely velocities 
for Drosophila lipid droplet transport). The parameter values are identical to Figure 5A 
(main text) except the stalling force. Similar curves for different stall forces are provided 
in Supp. Fig. S13.   
Fig 12A. Monte Carlo results were obtained by average over 2000 samples each having a 
duration of 100 s (1time step=10-5s). Simulation was started with the initial condition that  
all motors are randomly attached to the microtubule and simulation was stopped if all 
motors had detached 
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Fig 12B. Monte Carlo results were obtained by average over 2000 samples each having a 
duration of 100 s (1time step=10-5s). The average velocity was calculated using the velocities 
calculated over a time window of 0.5 sec in the steady state. However for single motor average 
velocity was calculated over the entire run-length. 
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Figure S13.  The effect of viscous drag on cargo transport, for cargos moved by  N=1 
(black), 2 (red), 3 (green) and 4 (blue) motors, with a single-motor stall force (F0) of 2.5 
pN, as predicted by Model B (A) Mean persistence of the cargo as function of viscosity 
of the medium (B) Average velocity of the cargo as a function of the viscosity of the 
medium, for motors with an unloaded velocity of  ~0.6 µm/sec (chosen to match likely 
velocities for Drosophila lipid droplet transport). In vivo, it is not entirely clear what stall-
force to use. We measure an apparent single-motor stall of ~2.5 pN, and thus used that to 
set the one-motor stall for the simulations here. However, we hypothesize that in fact the 
actual one-motor stall is the same in vivo as in vitro (i.e. ~5 pN), but that there is a second 
linkage between the cargo and the microtubule (e.g. the dynactin complex) that provides 
a drag of approximately 2.5 pN, so that the apparent one-motor stall we measure in vivo 
(that reflects the force to stall a motor, whose motion is already being opposed by this 
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drag) is the difference between the motor’s 5 pN stall, and the 2.5 pN of velocity-
independent drag, i.e 2.5 pN.  Thus, the curves for a 5 pN motor are presented in the main 
text, and for a 2.5 pN stall motor here.  
Number of configurations for A and B was the same as for Fig S12A and S12B, 
respectively.  
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Figure S14. Average number of engaged motors with time, at different values of 
reattachment rates for model A for (A) N=2 (B) N=3 and (C) N=4 total motors on a 
cargo. The arrows indicate the approximate time when the system reaches the steady state 
behavior. The parameters used in the simulation are same as in Figure 5A (main text). 
Monte Carlo results were obtained by averaging over 1000 samples each having a 
duration of 3 s.  Simulation was started with the initial condition that only one motor was 
attached. 


